
Authors:

Yann STEPHAN (Yann.Stephan@hp.com)

Sebastien PELLIZZARI (Sebastien.Pellizzari@hp.com)

Summary

Introduction 1
 Overview 1

 Requirements 1

 Development State 1

 Document Outline 1

Chapter 1 – The User Interface 2
 Global Overview 2
 Startup 2

 The Environment 2

 Look And Feel 3

 The STS Workspace 3
 Panel Organization 3

 The Menu Bar 4

 The Tool Bar 5

 The Helper Bar 5

 The Error Panel 5

 The Diagram Editor 6

 View Manipulation 6

The Diagram Nodes 6

Node Manipulation 7

Node Pins 7

Connecting Pins 8

Operations via

 Contextual Menus 8
 The Mini View 10

Quick Overview 11

View Region Manipulation 11

The Mini View Toolbar 11
The Toolbox 12

The Toolbox Libraries 12

The Toolbox Templates 12

Adding Templates 12

Toolbox Options 13

Helper Nodes 13

The Property Editor 13

Chapter 2 – Call Flow: the Basics 15
 Introduction 15

 Nodes Description 15
 Call Nodes 15

New Call 15

End Call 15

SIP Message Nodes 16
Send 16

Receive 17

Synchronization Nodes 18

Action Nodes 18

Pause 18

Other Nodes 18

Advices & Guidelines 18

Chapter 3 – Call Flow: Extended 19
 Action Code 19
 Language Structure 19

 Call Variables 19

 Assignment Actions 20

Regular Expression

 Extraction 20

Constants 20

Comparison Result 20

String to Double Conversion 20

 Computation 21

 Commands 21

Logging Commands 21

Execution Commands 21

PCAP Play Command 21

 Extended Nodes 22
 Action Code Node 22

 Synchronization Nodes 22

Receive Signal 22

Send Signal 22

Sebastien PELLIZZARI – HP Invent 2008 11/11

SIP Test Studio – User Manual 11//11

User Manual

SIP Test Studio (STS) is a Windows application that allows graphical edition of SIPP scenarios – SIP functional

and performance test platform – from simple UAC/UAS to complex 3PCC-extended cases involving multiple clients,

by representing them as diagrams.

The present document describes the application features from the user point of view. For information

regarding STS development and internal mechanisms, please refer to the document entitled “Sip Test Studio:

Implementation Reference”.

Warning: this documentation is preliminary and therefore subject to change without notice. The

referenced documents may or may not be already available either.

SIP Test Studio provides a graphical interface allowing the user to edit documents made of multiple

SIPP scenarios. Such document is known as call flow, and is made of one or several calls represented as diagrams.

Such calls are sequences of nodes representing the various actions needed to model the behavior of a SIP user agent,

such as sending or receiving SIP messages, processing them, and playing media streams through RTP. Furthermore,

the calls can communicate with each other by sharing data extracted from or inserted into SIP messages, thus

making edition of complex scenarios such as 3PCC and call conferencing possible.

STS is a Windows only application fully written in C# and relies on the .NET Framework 3.5. Therefore

it requires at least – and has only been tested on – Windows XP or Windows Vista with an up-to-date .net

environment. Except a 3-buttons mouse, no particular hardware is required. But as the application makes intensive

use of graphical assets for both its interface and the diagram editor the hardware resources you may need actually

depend on the richness of the documents you will want to manipulate in STS.

STS is currently in early development stage but is intended to go open source in Q4 of 2008. For more

information about STS development, refer to the document entitled “Sip Test Studio: Implementation Reference”.

The present document is made of the following chapters:

- The User Interface, which presents the application GUI and its features.

- Call Flow: the Basics, which introduces the basics of call flow edition.

- Call Flow: Extended, which describes the more complex features of STS regarding data extraction/insertion

through variable manipulation and inter-call communication.

Document Outline

Development State

Requirements

Overview

Introduction

 22/22 SIP Test Studio – User Manual

– Chapter 1 –

The User Interface

At startup, the STS application shows a “splash screen” while it is loading in memory. When the initialization

completes, that screen disappears and you gain control over the application.

As part of the initialization phase, the application checks the registry for valid file association with “.std”

documents. When this check is performed, you may encounter the following message:

If so, it is likely that you are not logged in with Administrator rights, or didn’t run the application with such rights

enabled (e.g. in Vista: right-click on the executable file, then “Run as administrator”), resulting in STS not having

write access to the registry. From there you can either click ‘Yes’ and run the application again with the previous

condition verified, or ignore this message and click ‘No’ so that this check will be skipped next time.

After the initialization completes, the splash screen is closed and the main window is displayed:

The STS environment consists of one main window that displays and allows edition of one call flow document

at a time. To edit multiple documents simultaneously, just run multiple instances of STS.

The STS workspace

The Environment

The STS splash screen

Startup

Global Overview

Sebastien PELLIZZARI – HP Invent 2008 33/33

SIP Test Studio – User Manual 33//33

The STS environment provides a uniform user interface that makes use of a unique color scheme and set of

shapes. With gray as its base color, the GUI is made of round-shaped areas of different tones which make them easy

to discern and spot. A colored highlight provides instant feedback on sensitive areas like buttons and collapsible

panels as the mouse moves over them. The overall look-and-feel of the STS environment aims at providing every

feature on-screen while not distracting you from the content you’re editing – that is, the diagram.

On the contrary, the diagram editor and the tabs inside the property editor (see section “The Property

Editor” for more information) are the only parts of the GUI that make intensive use of colors. The diagram editor

uses different shapes and tones on nodes of different categories to help you distinguish them, while the property

editor highlights keywords, syntax elements and errors in code and SIP message editors to give prominence to the

semantic of their content.

The main window defines the whole STS workspace. Every tool needed for call flow authoring and

visualization is available through this interface that exposes the following layout:

The following sections describe each part of the layout and present their features.

The light-gray space separating the main 5 panels of the workspace is a splitter zone that allows you to resize

the panels by using the mouse (click and drag):

Panel Organization

Menu Bar

Tool Bar

Diagram Editor Toolbox Miniview

Property Editor

Error Panel

Helper Bar

The STS Workspace

Look and Feel

 44//44 Sebastien PELLIZZARI – HP Invent 2008

44/44 SIP Test Studio – User Manual

The following zones highlighted in orange can be moved with the left mouse button to resize the panels:

Double-clicking on the headline of a panel will expand it over its neighbor(s):

To revert it back to its former size, double-click on its headline again.

The menu bar provides access to general actions such as document

manipulation (save, open, etc.) and edition commands. It contains 3 top-level

menus:

 The File menu exposes the following items:

• New Document: closes the current document and opens a new blank one. If the current

document has unsaved modifications, you will be asked whether to save or discard them.

Shortcut: Ctrl + N.

• Open Document: closes the current document, prompts for a path to an existing document file

and opens it. If the current document has unsaved modifications, you will be asked whether to

save or discard them.

Shortcut: Ctrl + O.

• Save Document: saves the current document. If this is the first time the document is saved since

it was created, this will do the same as the “Save Document as” item action (see below).

Shortcut: Ctrl + S.

• Save Document As: Prompts for a file path and saves the current document at the specified

location. The new path will become the active path for this document, and further “Save

Document” actions will overwrite the file at this location.

Shortcut: Ctrl + Shift + S.

• Export: exports the call flow document to SIPP scenarios. The generated scenario files will be

output into the same directory as the call flow document.

Shortcut: Ctrl + E.

• Exit: closes the application. If the current document has unsaved modifications, you will be asked

whether to save or discard them.

Shortcut: Ctrl + Q.

 File Edit Help

The Menu Bar

 Toolb

ox

Sebastien PELLIZZARI – HP Invent 2008 55/55

SIP Test Studio – User Manual 55//55

 The Edit menu exposes the following items:

• Undo: undoes the last action. Only actions that involve node manipulation such as adding,

moving, sizing, renaming or removing nodes can be undone. Changes made to the properties of a

node are not taken into account by the undo/redo mechanism.

Shortcut: Ctrl + Z.

• Redo: redoes the last undone action.

Shortcut: Ctrl + Y.

• Select All: selects all nodes.

Shortcut: Ctrl + A.

• Cut: cuts the selected nodes and saves them to the clipboard.

Shortcut: Ctrl + X.

• Copy: copies the selected nodes to the clipboard.

Shortcut: Ctrl + C.

• Paste: pastes nodes from the clipboard.

Shortcut: Ctrl + V.

• Delete: removes selected nodes from the diagram.

Shortcut: Del.

 The Help menu exposes the following items:

• About: shows the application about box.

Shortcut: F1.

The tool bar provides buttons representing the most common actions that

are accessible from the menu bar. Their functions are the same, and the tool bar is

only here to provide quicker access to them.

The helper bar at the bottom of the workspace provides a quick

description of the purpose of the panel at the current cursor location. Its content may

change depending on the state of the 3 modifiers keys: Control, Shift and Alt.

The error panel is collapsed by default, and will expand when errors are

emitted by the Export action. By double clicking on a message, the editor will select

and show the node that is responsible for the corresponding error.

The Error Panel

The Helper Bar

The Tool Bar

 Toolb

ox

 Toolb

ox

 Toolb

ox

 66//66 Sebastien PELLIZZARI – HP Invent 2008

66/66 SIP Test Studio – User Manual

The diagram editor displays the diagrams of the current call flow

document and allows you to edit them. The nodes are represented by round-shaped

rectangles of different inner colors and names, and are surrounded by pins that can

have names. Those pins can be connected to each other to form a diagram. The

following sections will present you an in-depth overview of the diagram editor

features.

The diagram editor uses vector graphics to render its nodes. As a consequence, you can manipulate the

diagram view at will and still be able to edit the diagram. 3 view manipulation modes are provided by the diagram

editor:

• Translation

Translation is performed by pressing the middle

button of the mouse and holding it while moving the mouse

in the desired direction. A manipulation guide made of blue

circles and a green line will show you the manipulation being

done. To end the manipulation, release the mouse button.

Note: quick translation can be done by holding

the CTRL key and pressing any directional key.

• Zoom

Zoom is performed the same way translation is,

except you must hold the CTRL key during the process. Only

the horizontal mouse displacement modifies the zoom

factor.

Note: quick zoom can be done by scrolling the

mouse wheel.

• Rotation

Rotation is performed the same way translation

is, except you must hold the SHIFT key during the process.

Only the horizontal mouse displacement modifies the

rotation angle.

Note: while not as useful as the two other modes,

the rotation has been implemented to illustrate the

possibilities offered by vector graphics-based editors.

The nodes in the diagram are round-shaped rectangles that contain text and/or symbols that inform

about their meaning. The inner color of a node and the style of its borders (e.g. a solid line or a dashed line) are

bound to the semantic of that node.

Each node is made of at least the 3 following pieces of information: its location and size, its name, and its

pins. Each of them can be changed depending on the action you take and the kind of node considered.

For more information about the different node types and their properties, see the “Call Flow: the Basics”

and “Call Flow: Extended” chapters.

Examples of nodes of different types

The Diagram Nodes

View Manipulation

The Diagram Editor

 Toolb

ox

Sebastien PELLIZZARI – HP Invent 2008 77/77

SIP Test Studio – User Manual 77//77

The diagram editor allows for various manipulations on nodes. Some of them are only available by using

the mouse, while others are accessible through keyboard interaction. You can:

• Select nodes

To select nodes on the diagram, you first need to

click somewhere on the diagram (neither on a node nor a

pin) and hold the left mouse button. As you move the cursor,

a blue rectangle is drawn on the diagram, and the nodes it

intersects are outlined with a golden bold line, telling you

they become selected. To end the selection, release the left

mouse button.

Note: when only one node is selected, you can select nodes around it by pressing any directional key.

• Move nodes

To move selected nodes, click on a selected node

and hold the left mouse button. As you move the cursor, the

selected nodes move accordingly while still being aligned

with an invisible grid that helps you position your nodes. To

end moving nodes, release the left mouse button.

• Resize nodes

To resize selected nodes, move the cursor around

the edge of one of them. When the cursor changes from the

regular pointer to a bidirectional arrow, press and hold the

left mouse button to start resizing. While moving the cursor

around, the selected nodes are resized accordingly, while

still being aligned with an invisible grid. To end resizing

nodes, release the left mouse button.

• Rename nodes

To rename a node, double-click on it with the left

mouse button. The editor becomes darker to indicate you

that no further modifications can be made to the diagram

(like selecting, moving nodes, etc.) while still in this mode,

and a text box appears over the node letting you type a new

name. You can press ESC to cancel edition, or press ENTER or

click anywhere outside the node to validate it.

Note: when only one node is selected, you can rename it by pressing F2.

A node in the diagram can have from zero to many pins around it. A pin can have a name (if so, it is

displayed around it) and is either an input or output pin:

There is no graphical difference between input and output pins. But in their default state, a node will have

input pin(s) on the top and left hand side, and output pin(s) on the bottom and right hand side.

Some operations can modify the positions of a pin or the number of pins. They are explained in the

paragraph below entitled “Operations via Contextual Menus”.

A node with 3 pins: one input pin (top), and two output pins

Node Pins

Node Manipulation

 88//88 Sebastien PELLIZZARI – HP Invent 2008

88/88 SIP Test Studio – User Manual

The diagram editor allows you to connect and disconnect the pins between nodes by using the mouse. A

pin can only be connected to one other pin, and pins must be of different kinds (input and output).

• Connect two pins

To connect two pins, click on one of them with

the left mouse button and hold it pressed while moving the

cursor to the other pin. During this process, a gray wire will

be drawn on the diagram to show you the connection state.

When the cursor reaches another pin which connection is

possible, the wire will stop moving. To end the connection,

release the mouse button over the destination pin.

• Disconnect two pins

To disconnect two pins, repeat the process above

but release the mouse button over the diagram background.

This process can be simplified by simply clicking on a

connected node and releasing the left mouse button

immediately.

The diagram editor provides a set of contextual menus you can invoke by clicking anywhere on the

diagram editor with the right mouse button. The content of those menus varies according to the current state of the

selection and the cursor location: depending on what elements are under the cursor, additional menus and actions

will be available.

There’re two kinds of elements that can affect the contextual menus that way: the nodes and their pins.

When the cursor moves over a node or one of its pins, the element will be highlighted in orange to indicate that

some additional actions in the contextual menus are made accessible:

When the menus are invoked, up to 4 contextual windows will pop up around the cursor. Each of them

contains actions related to the selection, the node under the cursor, the pin under the cursor, or the whole diagram.

The kind of elements they act on is written in an orange margin inside the corresponding pop up window:

A contextual menu will always have the same location relatively to the cursor, and will only be displayed if

at least one of its actions is possible in the current editor state. Some of them may not be always available depending

on the nature of the highlighted elements and selected nodes.

The 4 Contextual Menus

Unlock All

Unhide All Pins

G
lo

b
a

l

Group

Unhide Pins

Mirror

Rotate

Send To Back

Bring To Front

Lock

S
e

le
ct

io
n

Hide

P
in

Expand/Collapse

Ungroup

Mirror

Rotate

Send To Back

Bring To Front

Unhide Pins

Lock

N
o

d
e

Examples of highlighted nodes and pins

Operations via Contextual Menus

Connecting Pins

Sebastien PELLIZZARI – HP Invent 2008 99/99

SIP Test Studio – User Manual 99//99

• The Global menu

The Global menu provides actions that affect the whole diagram. It will always be

available, regardless of the highlighted elements and selected nodes.

o Unlock All: unlocks all nodes. To learn more about locking nodes, see the Lock command in the Node menu.

o Unhide All Pins: unhide all hidden pins. To learn more about hiding pins, see the Hide Pin command in the Pin

menu.

• The Node menu

The Node menu provides actions that affect the highlighted node if any. It will

only be available if the cursor is over an unlocked node when contextual menus are

invoked.

Note: if the highlighted node is locked, another menu also named Node will be

shown instead, providing only the Unlock command.

o Expand/Collapse: only available if the highlighted node is a group; expands or collapses the group so that the

elements in it will become hidden or visible. To learn more about groups, see the Group command in the

Selection menu.

o Ungroup: only available if the highlighted node is a group; un-groups the nodes contained in the group. To learn

more about groups, see the Group command in the Selection menu.

o Mirror: switches the left and right pins. This command may violate the previously established design rule stating

that input pins shall be on the left hand side whereas output pins be placed on the right hand side.

Nevertheless, this feature is useful to keep your diagram readable when drawing wires in order to prevent them

from crossing other nodes or wires.

o Rotate: this command opens a sub-menu providing either clockwise rotation or counter-clockwise rotation.

Those commands will switch the pins on the borders of the node accordingly.

o Send to Back: places the highlighted node under any other node in the diagram. That is, if this node overlaps

with another node, it will be drawn under that one.

o Bring to Front: places the highlighted node on top of any other node in the diagram. That is, if this node

overlaps with another node, it will be drawn over that one.

o Unhide Pins: shows the previously hidden pins belonging to the highlighted nodes. To learn more about hiding

pins, see the Hide Pin command in the Pin menu.

o Lock: locks the highlighted node. When a node is locked, it cannot be selected nor renamed, moved, etc.

• The Pin menu

The Pin menu provides actions that affect the highlighted pin if any. It will only

be available if the cursor is over a visible pin when contextual menus are invoked.

o Hide: only available if the pin is not connected; hides the pin. When hidden, the pin cannot be highlighted or

participate in a connection.

Unlock All

Unhide All Pins

G
lo

b
a

l

Expand/Collapse

Ungroup

Mirror

Rotate

Send To Back

Bring To Front

Unhide Pins

Lock

N
o

d
e

Hide

P
in

 1100//1100 Sebastien PELLIZZARI – HP Invent 2008

1100/1100 SIP Test Studio – User Manual

• The Selection menu

The Selection menu provides actions that affect the selected nodes. It will only be

available if there is at least one node that is selected.

Note: take care not to confuse selected nodes and highlighted nodes. Selected

nodes have a golden outer glow around them while the highlighted node has a thin

orange inner border that disappears when the cursor leaves its surface. The highlighted

node may or may not belong to the set of selected nodes.

o Group: creates a group node that contains the selected nodes and duplicates the pins of the selected nodes that

are either not connected at all or connected to nodes that do not belong to the selection:

When nodes are grouped, they’re considered as one group node. The group node will draw inside itself the grouped

node whenever it is large enough to do so. If you either collapse it via the Expand/Collapse command or resize it to

make it smaller, the inside of the node will smoothly fade to a plain text that can be edited like you would edit the

name of any other node. This feature allows you to make your diagram compact.

 Note: when in a group, a node cannot be selected, so it becomes impossible to edit its properties. To do so,

invoke the contextual menus over the group node and use the Ungroup command in the Node menu to ungroup the

nodes so that you can select the desired node again. To learn more about node properties, see the section entitled

“The Property Editor”.

o Unhide Pins: shows the previously hidden pins belonging to the selected nodes. To learn more about hiding

pins, see the Hide Pin command in the Pin menu.

o Mirror: switches the left and right pins of the selected nodes.

o Rotate: opens a sub-menu providing either clockwise rotation or counter-clockwise rotation. Those commands

will switch the pins on the borders of the selected nodes accordingly.

o Send to Back: places the selected nodes under any other node in the diagram. That is, if these nodes overlap

with another node, they will be drawn under that one.

o Bring to Front: places the selected nodes on top of any other node in the diagram. That is, if those nodes

overlap with another node, they will be drawn over that one.

o Lock: locks the selected nodes. When a node is locked, it cannot be selected nor renamed, moved, etc.

The mini view displays in the diagram in its entirety and the bounds of the

area visible in the diagram editor. It allows you to quickly see which portion of the

whole diagram is currently visible and to manipulate the view region.

The Mini View

Group

Unhide Pins

Mirror

Rotate

Send To Back

Bring To Front

Lock

S
e

le
ct

io
n

 Toolb

ox

Sebastien PELLIZZARI – HP Invent 2008 1111/1111

SIP Test Studio – User Manual 1111//1111

The mini view is made of two main components: a panel that shows you the

whole diagram and the current visible area, and a toolbar that provides various

command to manipulate the view region.

The main panel will always draw the entire diagram, regardless of how large

it is, and will darken non visible area while outlining the view region in orange.

Whereas the diagram editor displays the diagram after applying to it some

transformations (like rotation, zoom, etc.), the mini view will always draw the

diagram the same way; instead, the inverse transformation will be applied to the

view region, letting you know exactly which part of the diagram you’re editing.

The main panel of the mini view allows you to manipulate the view region with the mouse:

• Translation

Translation is performed by pressing the left

button of the mouse over the view region and holding it

while moving the mouse in the desired direction. The

diagram editor will be updated immediately. To end the

manipulation, release the mouse button.

Note: quick translation can be done by clicking on

a spot outside of the view region. Doing so will center the

view region on that spot.

• Zoom

Zoom is performed by scrolling the mouse wheel.

The view region will be stretched or shrunk around the

cursor location.

The mini view toolbar provides commands that manipulate the view region. The 5 commands are, from left to

right:

• Fit view: modifies the view region so that the whole diagram becomes visible.

• Zoom in: makes the view region smaller, thus making the diagram look bigger in the editor.

• Zoom out: makes the view region bigger, thus making the diagram look smaller in the editor.

• Reset rotation: resets any rotation transformation performed on the view region.

• Reset view: resets the view to its initial location, size and angle.

The Mini View Toolbar

View Region Manipulation

Quick overview

The mini view in action

 1122/1122 SIP Test Studio – User Manual

The toolbox allows you to add new nodes to your diagrams and store

packed groups of nodes for later use – like an intelligent clipboard. The toolbox is

made of libraries that are named groups of templates. A template is a model

representing one or several nodes with some connections and properties already set

to fulfill a specific task, and can be instantiated any number of times in a diagram.

The libraries in the toolbox are represented by gray panels. Those panels can be

reorganized with the mouse by dragging them with the left mouse button.

A contextual menu you can invoke by right-clicking on one of them allows you to

rename a library or remove it from the toolbox. Deleting a library cannot be undone.

When the application is closed, the toolbox is saved to disk and will be loaded next

time. Note: be careful when you run multiple instances of STS together, as the last one to

be closed will be the one to actually save its version of the toolbox.

Clicking on the headline of a library panel allows you to expand or collapse it.

Each panel contains a list of buttons representing the templates in the library. These

buttons can be reorganized with the mouse by dragging them with the left mouse

button. They can be moved from a library to another that way.

A contextual menu you can invoke by right-clicking on a template button

allows you to rename a template or removing it from its library. Deleting a template

cannot be undone.

To instantiate a template, you can either click on the associated button (simple

click), or drag the button with the left mouse button and drop it somewhere on the

diagram. Attention: The drag’n’drop mechanism is used for both instantiating and

reorganizing.

When clicking on a template button, if there’s only one node selected in the diagram editor, and the template

only generates one new node, the system will try to connect and position the new node automatically, allowing for

fast diagram composition. When new nodes are created from a template, they become selected in the diagram

editor.

To add templates to the toolbox, select one or more nodes in the diagram editor,

hold the SHIFT key, and drag them to the toolbox with the left mouse button. As the cursor

drags them over a library panel, this panel will expand and a new button will appear in it.

Releasing the mouse button will create a new template button.

Adding templates

The Toolbox Templates

The Toolbox Libraries

The Toolbox

Sebastien PELLIZZARI – HP Invent 2008 1133/1133

SIP Test Studio – User Manual 1133//1133

The special panel at the bottom of the toolbox entitled “More…” is not a library:

it is an option panel providing various commands to customize the toolbox content

and behavior.

The “New Library” button allows you to add a new empty library to the toolbox.

By clicking this button, a new library panel will appear at the end of the toolbox and

you will be asked for its name.

The “Auto-Collapse” option controls how other panels behave when a panel is

expanded. If this option is checked, other panels will be automatically collapsed so

that only one library panel at a time is expanded.

Note: other commands are unavailable and reserved for future development.

 The toolbox comes by default with a “Misc.” library containing node templates that have no particular

purpose regarding call flows. Those nodes are helper nodes which aim at bringing to your diagrams information for

the reader/user of the document, and are ignored otherwise. They have no pins and have different forms and colors.

• Notes

The note allows you to put comments inside your diagram. Their content can

be edited like the name of any other node, by double-clicking on it.

Notes are useful to explain things that may be difficult to understand only by

seeing the diagram, or that would require the reader to go read the properties of the

nodes. It can also be useful to annotate bugs or fixes in shared documents.

• Delimiters

A delimiter is a semi-transparent node with dash-dot thick borders that are

used to mark groups of nodes that are linked together by some semantic that are not

represented in the diagram by wires.

For instance, when two scenarios that are drawn side-by-side are to be

communicating with each other via SIP messages, it may become helpful to draw

delimiters around the Send/Receive node pairs across the two diagrams, so the reader

can easily understand the call flow behavior at runtime.

Note: it can become handy to use the lock/unlock commands available from the diagram editor contextual

menus on those kind of nodes so they do not perturb edition.

Note: when you add such nodes to the diagram – especially delimiters – they will be added on top of other

nodes. Use the Send to Back/Bring to Front commands from the contextual menus to place them behind other nodes

so it becomes easier for you to select them.

To get an idea of the general use of helper nodes, see the 3PCC example next page.

The property editor allows you to modify the attributes of a node selected in

the diagram editor.

When a node is selected in the diagram editor, the property editor displays

one or more tabs providing access to special editors associated with that node. The

editors that are displayed are completely dependent on the nature of the node

selected and are explained in details in the “Call Flow: the Basics” and “Call Flow:

Extended” chapters.

 To see examples of property editor tabs, see next page.

The Property Editor

Helper Nodes

Toolbox Options

 1144//1144 Sebastien PELLIZZARI – HP Invent 2008

1144/1144 SIP Test Studio – User Manual

Examples of property pages

Usage of delimiters and notes in the 3PCC example

 SIP Test Studio – User Manual 1155//1155

– Chapter 2 –

Call Flow: the Basics

Call Flow documents are a set of scenarios made of nodes that are linked together by wires connected to their pins. Each

scenario is represented by a New Call node which marks the starting point of the scenario, and is made of a chain of nodes,

starting with that new call node.

The nodes involved in the call flow behavior belong to several categories:

• Call nodes

Those nodes manage call starting and end points. There are two node types inside that category: New Call nodes,

and End Call nodes.

• SIP message nodes

Those nodes manipulate SIP messages, allowing you to either send or receive SIP messages. There are two node

types inside that category: Send nodes, and Receive nodes.

• Synchronization nodes

Those nodes allow synchronization and data exchange between two scenarios. There are two node types inside that

category: Send Signal nodes, and Receive Signal nodes. Synchronization nodes are explained in the next chapter,

“Call Flow: Extended”.

• Action nodes

Those nodes allow the application running the scenario (typically SIPP) to perform different tasks aside from sending

and receiving SIP messages. There are three node types inside that category: Pause nodes, Log nodes, and (generic)

Action nodes. The two latter ones are explained in the next chapter, “Call Flow: Extended”.

• Flow nodes (future versions)

Those nodes will allow you to control the call execution flow by using conditional branching and loops.

The New Call node marks the starting point of a scenario. Any node that is not

connected, directly or indirectly, to a New Call node, will be ignored on export, and a warning

message will be output to the Error panel.

The “Error” output pin represents the execution point that is reached when an unexpected message is

received at runtime. For instance, if an ACK is expected at a given point of the scenario, but a BYE is received, the

execution point will jump to the node after the “Error” pin, if any.

The New Call node has no property pages.

The End Call node stops the call in its current state. It can mark the call either successful

or failed. It has no output pin because no actions are executed in the scenario after this node is

reached.

The End Call node has one property page allowing you to specify whether the call is

successful or has failed.

End Call

New Call

Call Nodes

Nodes Description

Introduction

 1166/1166 SIP Test Studio – User Manual

The Send node allows you to send a SIP message. This message is specified as a property

of the node, and can contain SIPP keywords as well as references to call variables. The Send node

has two property pages, respectively entitled “Properties” and “Actions”.

• The “Properties” page

This page allows you to type the SIP message to send. It contains two

panels: a “Message” panel and an “Errors” panel.

The “Message” panel allows you to edit the SIP message. Its text editor

provides several features to make your life easier:

- SIP syntax checking: the syntax of your message

will be checked as you type it, and errors will be

underlined in red and reported in the “Errors” panel.

Note: while errors are reported, it does not forbid you to

send invalid SIP messages.

- Code completion: by pressing the CTRL + Space shortcut, a list will be shown

under the edition cursor, in which you can navigate by using the UP and DOWN keys. This

list will contain what the editor this is OK to type at that point of the SIP message. If you

start typing, the list will update itself to show you whether one of its items begins with

what you typed. To close that window, press ESCAPE. To insert the entry selected in that

list, press RETURN.

- Keyword proposal: by pressing the ALT + Space shortcut, a similar list containing

every SIPP keyword will be shown, allowing you to insert one of them.

Note: in order for the editor to analyze the SIP message, keywords are internally replaced

by a default value before the message is parsed. For that reason, the editor may actually

detect some keywords as errors if it thinks they don’t fit at a specific point.

- Contextual Help: by pressing the SHIFT + Space shortcut, a helper tooltip will be

shown under the active line, showing you the expected form of the SIP line you’re editing.

If at this point, multiple lines can be typed, the tooltip will show how many possible form

there are (e.g. ‘1 of 2’) and will allow you to switch from one to another with the UP and

DOWN keys.

• The “Actions” page

This page allows you to type action code that will be executed before the

message is sent. To learn more about action code, see the next chapter: “Call

Flow: Extended”.

This page works the same way as the previous one. The “Action Code”

panel provides an editor that has the following features: Syntax checking, Code

completion, and Contextual help. To learn more about Action code syntax, see

the next chapter: “Call Flow: Extended”.

Send

SIP Message Nodes

 SIP Test Studio – User Manual 1177//1177

The Receive node allows you to wait for a SIP message. The type of expected message is

specified as a property of the node. The Receive node has two property pages, respectively

entitled “Properties” and “Extraction”.

• The “Properties” page

This page allows you to specify the kind of message to receive, check its content

and program the behavior of the call flow when such message is received. The property

page is split into the following parts:

Optional: when checked, the Receive node is optional. That supposes the next

node is a non-optional Receive node, and means that if one of the specified messages is

received while waiting for in next non-optional state, is will not be considered

unexpected and will be processed by this node.

When a Receive node is marked optional, its borders change from a solid line to a dashed line and a Next pin

appears. If you connect nodes to that output pin, they will be executed in place of the other nodes connected to the

default output pin in case such message is received. If you leave the pin unconnected, the call flow will continue

normally.

Message Type: specifies whether the expected message is a request or response message. When you change this

attribute, the content of the Constraints panel is modified accordingly.

Constraints: specifies the list of expected methods (for a request) or codes (for a response). At least one element

must be checked. The semantic of that list changes depending on whether the node is marked optional: if optional,

the node will process any message that is of the specified type and contains the specified node or method, and if

nodes are connected to the Next pin, the call flow will continue in that direction after such message is received; if not

optional the node will expect any message that verifies those conditions, and the call flow will only continue when

such message is received.

The Constraints panel also contains controls that will help you add or remove codes or methods. Their

behavior is different whether you expect a request or a response:

- For a request: the mask must be an upper-case method name, and clicking the Add or Remove button will

check or uncheck that method in the list. If the list contains no such method, it will be automatically added.

- For a response: the mask must contain a 3-character code made of either the X character or a digit (e.g. 200,

21X, 1XX, etc.). If only made of digits, clicking the Add button will check the corresponding item in the list, and

add it if not present. If not, clicking the Add button will check only matching items that are in the list, and will

not add any new one. In any case, clicking the Remove button will uncheck any matching item in the list.

• The “Extraction” page

This page allows you to type action code that will be executed after a

message is received. To learn more about action code, see the next chapter: “Call

Flow: Extended”.

Receive

 1188/1188 SIP Test Studio – User Manual

Those will be presented in the next chapter, “Call Flow: Extended”.

The Pause node makes the application running scenario

(typically SIPP) pause for the specified duration. Its property page

allows you to specify that duration in milliseconds.

Those will be presented in the next chapter, “Call Flow: Extended”.

Before starting to edit or create a call flow, keep in mind the following points:

• The toolbox contains by default at least one template for instantiating one of those nodes. If you delete every

template that allows you to instantiate a given type of node – STS does not prevent you from doing that – you

won’t be able to create it again until you create a new template containing such node.

• The name of a node isn’t linked to its type or content. You are responsible for making the names of your nodes

consistent with their role, type and content. For that reason, nothing will warn you if the name of a node

becomes inconvenient after you modified one of its attributes (e.g. you instantiated the ‘200 OK’ template

from the ‘Receive (Requests)’ template library, changed the expected response codes from the property pages

of that node, and forgot to rename it).

Note: Automatic naming is an optional feature that will be introduced in future versions of STS.

• When you drop nodes to the toolbox, their names and properties are saved in the new template created that

way. When you instantiate a template, you are responsible for checking that the properties of the generated

nodes are consistent with your actual diagram. The same goes for copy/paste operations.

Advices & Guidelines

Other Nodes

Pause

Action Nodes

Synchronization Nodes

Sebastien PELLIZZARI – HP Invent 2008 1199/1199

SIP Test Studio – User Manual 1199//1199

– Chapter 3 –

Call Flow: Extended

In the next sections the user is supposed to have sufficient knowledge about SIPP scenario semantics such as

keywords, command line parameters, SIPP-specific XML nodes and call variables.

Action code in STS describes tasks to perform at a given time. For instance, ‘Send’ nodes allow you to specify

action code that is executed before the message is sent, while ‘Receive’ nodes use action code to extract data from a

received message.

Action code also allows you to define variables in a scenario. A variable is a memory storage unit replicated at

runtime for each and every call running that scenario – that is, it is present in every of those calls but its value can

differ. You will typically use it to store data extracted or computed from received SIP messages and inject it into sent

SIP messages.

Action code is a C-like language made of instructions separated by a semicolon. You can type line comments

and multi-line comments as in C/C++, and strings are represented by double-quoted strings but without escape

sequences.

Actions are executed in order. They can be split into several categories:

• Assignment: actions that assign a new value to a variable.

• Computation: actions that assign a value to a variable that is computed from other variables.

• Commands: actions that communicate data outside of the application running the scenarios

(typically SIPP), like logging, shell command invoking, or PCAP play.

Using a variable is done by typing its name in brackets (e.g. [SDP]) if it exists in the same scenario as the one

owning the node using it, or typing its name along with the source scenario name otherwise (e.g.

[Controller_A.SDP]). For example, you can type it in the SIP message of a ‘Send’ node: before sending the

message, this will be replaced by the effective value of the variable.

Note: if the variable belongs to a different scenario, you will need to set a synchronization point between those

two that occurs after the variable is set in the source scenario and before it is used in the destination scenario.

Call Variables

myVar = 1; // This is a line comment.

/* This is a

multi-line comment */

log "D";

Language Structure

Action Code

 2200//2200 Sebastien PELLIZZARI – HP Invent 2008

2200/2200 SIP Test Studio – User Manual

Basically, an assignment action is of the following form:

The variable-name part is an identifier representing the name of the variable that will be assigned. It may or may

not represent a variable already assigned in this scenario. The variable will belong to the scenario that owns the node

defining this action code action. The assignment-source part represents the source of the value that will be

assigned to the variable, and can be any of the following:

Regular expression extraction is an assignment source that allows you to extract data from the last received

SIP message by using a regular expression. It must be of one of the following form, in which [] represents an optional

part:

• If -i is specified, the regular expression match will be case insensitive. If -m is specified, the call will be marked

as failed at runtime if the regular expression doesn’t match. You can specify both, one, or none, but the order

must be preserved.

• The string that follows is the actual regular expression to match.

• If the optional from block is present, the source parameter will specify which part of the SIP message will be

searched from. This parameter can be either msg to specify the full message (default), start_line to specify

only the start line, or a string that represents the name of the desired SIP header (e.g. "From:").

• If the optional from block is present and a SIP header name is specified, the optional at block can help you

match the index –nth occurrence of that header in the SIP message (1 by default).

You can specify either an integer or floating point constant value as an assignment source, but also a string

that can contain occurrences of other variables or SIPP keywords, such as "[field0]" or

"Received SDP: [sdp]". Before assignment, those occurrences will be replaced by the effective value of the

variable.

You can specify a comparison test between a variable and a constant value as an assignment source, like

myCounter > 1, myCounter <= 5 or myCounter == 0.14, etc. The result of this will be a Boolean value that is

the result of the specified test.

Note: tests will be used intensively in future versions of STS when flow nodes will be introduced, such as

dynamic branching.

The following assignment source will convert a string variable to a double value:

todouble myStringVariable

String to Double Conversion

Comparison Result

Constants

regexp[-i][-m] "a regular expression" [from source [at index]]

Regular Expression Extraction

variable-name = assignment-source ;

Assignment Actions

Sebastien PELLIZZARI – HP Invent 2008 2211/2211

SIP Test Studio – User Manual 2211//2211

A computation action is of the following form:

This action will compute the operation represented by the operator member with variable-name and right-

operand respectively as left and right operands, and store the result in the variable of the current scenario named

variable-name. operator can be any of the following: +=, -=, *=, /=. right-operand can be either an integer

or floating-point constant value, or the name of another variable – which can be either a local variable name or a

scenario-qualified name (e.g. Controller_A.SDP).

There are 3 different kinds of command actions available:

A logging command will output log information using the log mechanism of the application running the

scenario (typically SIPP). It must be of the following form, where | represents an alternative spelling:

You can use either warn or log depending on the nature of the message. The following string is the effective

message that will be output. That string can also contain occurrences of local variables or keywords that will be

replaced.

The execution command allows you to execute an external shell command from your scenario:

The PCAP play command allows you to play PCAP files at runtime:

To see examples on how to use Action Code in real life scenarios, see the 3PCC and 3PCC-Extended samples

that come along STS.

The following section will present you the special nodes that weren’t described in the previous chapters.

play audio|video "relative path to the file to play" ;

PCAP Play Command

exec "shell command" ;

Execution Commands

warn|log "your message here" ;

Logging Commands

Commands

variable-name operator right-operand ;

Computation

 2222/2222 SIP Test Studio – User Manual

There are 3 types of nodes that are designated as extended nodes as they are only used in complex scenarios

involving more than a scenario.

This node has no meaning regarding SIP messages. It only allows you to specify action code

that will be executed just before processing the next node.

The synchronization nodes work in pair: one Send Signal node connected to one Receive Signal node. Those

nodes encapsulate the behavior of the SendCmd and ReceiveCmd nodes in SIPP respectively: when a Send Signal

node is reached in a call, it unblocks the call containing the Receive Signal node connected to it and send it a Call-ID

parameter along with every variable belonging to that source call that will be used by the other destination call. And

when a Receive Signal node is reached in a call, this call will wait until it receives one.

The Receive Signal node has no properties, but has a property tab entitled ‘Actions’ that allows you to specify

action code that will be executed when the expected signal is received.

The Send Signal node has two property tabs:

• The “Pre-Actions” page

This page allows you to type action code that will be executed before the

signal is sent.

• The “Properties” page

This page allows you to specify the Call-ID the sent signal will contain. By

default, the Call-ID that is sent is the one of the source call. You can have the

same behavior by manually specifying [call_id] as a Call-ID value.

If the destination node is the first node of its scenario, a new call will be

created with the specified Call-ID.

Note: if you specify a Call-ID that is different from the one of the source

call and want the destination call to answer by a signal at a later time, you will

have to follow the next steps:

- Go to the ‘Pre-Actions’ page of the Send Signal node that belongs to the fist scenario A and specify:
origCID = "[call_id]";

- Then in the ‘Properties’ page of the Send Signal node that belongs to the answer scenario B and specify the

following Call-ID value: [A.origID].

Send Signal

Receive Signal

Synchronization Nodes

Action Code Node

Extended Nodes

