
IMS Bench SIPp

Reference Documentation

by Richard GAYRAUD [initial SIPp code], Olivier JACQUES [SIPp code/documentation], David Verbeiren (Intel) [IMS Bench], Philippe Lecluse (Intel) [IMS Bench], Xavier Simonart (Intel)
[IMS Bench], Many SIPp contributors [code]

Table of contents

1 Foreword................................................................................................................................................................................................................................................. 4

2 Installation............................................................................................................................................................................................................................................... 4

2.1 Obtaining the source code...................................................................................................................................................................................................................4

2.2 Pre-requisites.......................................................................................................................................................................................................................................4

2.3 Building IMS Bench SIPp components.............................................................................................................................................................................................. 7

3 Using IMS Bench SIPp........................................................................................................................................................................................................................... 7

3.1 Configuration...................................................................................................................................................................................................................................... 7

3.1.1 Manager Configuration.................................................................................................................................................................................................................. 7

3.2 Benchmark Execution.......................................................................................................................................................................................................................10

3.2.1 Running........................................................................................................................................................................................................................................ 10

3.2.2 Gathering Results......................................................................................................................................................................................................................... 11

3.2.3 Screens and Keys..........................................................................................................................................................................................................................11

3.3 Generating Reports........................................................................................................................................................................................................................... 16

3.3.1 Configuring the Report Content................................................................................................................................................................................................... 16

3.3.2 Executing doReport.pl..................................................................................................................................................................................................................21

4 Concepts and Features...........................................................................................................................................................................................................................21

Copyright © 2004,2005,2006,2007 The authors All rights reserved.



4.1 Multi-scenario mode......................................................................................................................................................................................................................... 21

4.2 User oriented mode........................................................................................................................................................................................................................... 22

4.3 Time Metrics.....................................................................................................................................................................................................................................23

4.4 Traffic control................................................................................................................................................................................................................................... 24

5 Writing XML Scenarios........................................................................................................................................................................................................................ 24

5.1 Structure of client (UAC like) XML scenarios.................................................................................................................................................................................39

5.2 Structure of server (UAS like) XML scenarios................................................................................................................................................................................ 45

5.3 Actions.............................................................................................................................................................................................................................................. 46

5.3.1 Regular expressions......................................................................................................................................................................................................................46

5.3.2 Log a message.............................................................................................................................................................................................................................. 49

5.3.3 Execute a command......................................................................................................................................................................................................................49

5.3.4 User related Actions..................................................................................................................................................................................................................... 51

5.3.5 RTD-related Actions.................................................................................................................................................................................................................... 52

5.4 Injecting values from an external CSV during calls......................................................................................................................................................................... 54

5.5 Conditional branching.......................................................................................................................................................................................................................55

5.5.1 Conditional branching in scenarios.............................................................................................................................................................................................. 55

5.5.2 Randomness in conditional branching......................................................................................................................................................................................... 57

5.6 SIP Authentication............................................................................................................................................................................................................................ 58

6 Various Topics...................................................................................................................................................................................................................................... 59

6.1 SIPp Transport Modes...................................................................................................................................................................................................................... 59

6.1.1 UDP one socket per user.............................................................................................................................................................................................................. 59

6.1.2 UDP multiple IP addresses...........................................................................................................................................................................................................60

6.1.3 TCP one pair of sockets per SIPp instance...................................................................................................................................................................................60

6.2 Running SIPp in background............................................................................................................................................................................................................ 60

6.3 Handling Media with SIPp................................................................................................................................................................................................................60

IMS Bench SIPp

Page 2
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



6.4 SIPp Exit codes................................................................................................................................................................................................................................. 60

6.5 Statistics............................................................................................................................................................................................................................................ 61

6.5.1 Response times............................................................................................................................................................................................................................. 61

6.5.2 Available counters........................................................................................................................................................................................................................61

6.6 Error handling................................................................................................................................................................................................................................... 63

6.6.1 Unexpected messages...................................................................................................................................................................................................................63

6.6.2 Retransmissions (UDP only)........................................................................................................................................................................................................ 63

6.6.3 Log files (error + log + screen).................................................................................................................................................................................................... 63

6.7 Online help (-h).................................................................................................................................................................................................................................64

7 Getting support...................................................................................................................................................................................................................................... 73

8 Contributing...........................................................................................................................................................................................................................................73

IMS Bench SIPp

Page 3
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



1. Foreword

IMS Bench SIPp is a performance testing and benchmarking toolset designed to provide an implementation of a test system conforming to the IMS Performance
Benchmark specification, ETSI TS 186 008. Please see the Introduction (intro.html) for more on what it can and cannot do and what this ETSI specification is all
about.

IMS Bench SIPp is based on a modified SIPp and still supports the original SIPp scenario commands as well as a series of extra commands and parameters. This
makes it suitable not only to test IMS core networks, as targeted by the IMS/NGN Performance Benchmark specification, but also standalone SIP proxies, SIP
application servers, B2BUAs, etc., whether they are IMS compliant or not. And this can be done while still benefiting from the large-scale benchmarking capabilities,
the deep automation, and the report generation functionality of IMS Bench SIPp.

In order to avoid duplication and to reduce the size of this documentation, the reader is asked to refer to the standard SIPp documentation for the general principles
governing the scenario files. This reference documentation does however contain (or at least tries to) an exhaustive list of scenario commands, arguments and actions.

2. Installation

2.1. Obtaining the source code

IMS Bench SIPp is released under the GNU GPL license (http://www.gnu.org/copyleft/gpl.html) . All the terms of the license apply.

The complete source tree containing all the components of IMS Bench SIPp can be obtained from the Subversion repository at
sipp.svn.sourceforge.net/svnroot/sipp/sipp/branches/ims_bench. For example, the following command creates the ims_bench directory and populates it with the
latest version of the sources:

svn co https://sipp.svn.sourceforge.net/svnroot/sipp/sipp/branches/ims_bench ims_bench

2.2. Pre-requisites
• In order to achieve around millisecond precision in scenario attempt scheduling and in timing measurements, the underlying operating system must provide

sufficiently fined grained scheduling. On most Linux distributions, this requires that the kernel be rebuilt with the kernel "Timer frequency" changed to 1000 HZ.
For example, on FC6:

rpm -i kernel-2.6.18-1.2798.fc6.src.rpm
cd /usr/src/redhat/SPECS
rpmbuild -bp --target=i686 kernel-2.6.spec

IMS Bench SIPp

Page 4
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

intro.html
http://www.gnu.org/copyleft/gpl.html


cd /usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.i686
make menuconfig
Change:

Processor type and features --->
Timer frequency (1000 HZ) --->

General setup --->
() Local version - append to kernel release <- set your own kernel prefix

Then, rebuild your kernel and point your /etc/grub.conf to it. Wait! ... Before you rebuild your kernel, you may want to include the change for the next item below
and only rebuild once!

make dep bzImage modules modules_install install
• When a SIPp load-generator instance must represent a large number of users (beyond a few 10K users), and when it is configured to use a different IP + UDP port

combination for each user, the system may exhibit poor performance (very long delay at startup, high CPU utilisation) making it unsuitable as a Test System. This
may be due to the default size of internal hash tables within the IP stack of the Linux kernel.

In order to avoid this problem, you can change the UDP_HTABLE_SIZE constant and rebuild your kernel (see above). At time of writing, this setting was not an
exposed kernel parameter and must be changed directly in the source code, at /usr/src/redhat/BUILD/kernel-2.6.18/linux-2.6.18.i686/include/net/udp.h (assuming
sources as in above example). The constant can be set to 32768.

This only applies to UDP mode. This parameter has no (positive) impact on TCP mode performance.

• In order for the timing precision to remain when measuring a time difference between two different physical systems, all systems that constitute the Test System
should be synchronized with a better precision than what the standard NTP protocol achieves. A simple way of doing this is to use the Precision Time Protocol
(IEEE 1588) deamon , ptpd (ptpd.sourceforge.net (http://ptpd.sourceforge.net) )

svn co https://ptpd.svn.sourceforge.net/svnroot/ptpd ptpd
cd ptpd/trunk/src
make
./ptpd -g (client side)

• Random number generation for the statistical distributions (scenario arrival, pauses in scenarios) require the GSL library. It can be obtained from
http://www.gnu.org/software/gsl and compiled from sources:

tar xvfz gsl-1.9.tar.gz
cd gsl-1.9/
./configure
make
make install

You may need to add the path to the library (/usr/local/lib by default) to the LD_LIBRARY_PATH environment variable or to the /etc/ld.so.conf file:

IMS Bench SIPp

Page 5
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://ptpd.sourceforge.net
http://www.gnu.org/software/gsl


echo /usr/local/lib/ >>/etc/ld.so.conf
ldconfig

• In order to be able to use the menu-driven benchmark configuration tool and the report generation tool, the following components must be installed.

• Perl XML::Simple module - http://search.cpan.org/dist/XML-Simple/

perl -MCPAN -e shell
{reply with default answers... just select the local ftp server}
cpan> install XML::Simple
cpan> quit

• Gnuplot 4.2 - http://gnuplot.sourceforge.net/

tar xvfz gnuplot-4.2.0.tar.gz
cd gnuplot-4.2.0
./configure --without-x
make
make install

• Configure Virtual IPs
In case you want your test systems to support large numbers of users, you'll probably want to configure multiple virtual IP addresses on your network adapters.
The actual number of IP addresses to configure will depend on the transport option you select: a single IP address per SIPp instance, in which case you need many
IP addresses as you'll run SIPp instances on a same physical system, or multiple IP addresses per SIPp instance in which case you will want plenty of IP addresses.

There are at least two ways to configure virtual IP addresses:

1. Through ifconfig command execution (probably from within a script)
ifconfig eth0:0 192.168.1.76/24 up

2. or through the network adapter configuration files (/etc/sysconfig/network-scripts/ifcfg-eth0:x), and applying the changes with "service network restart"

DEVICE=eth0:0
BOOTPROTO=static
TYPE=Ethernet
IPV6INIT=no
HWADDR=00:15:17:01:E2:E2
IPADDR=192.168.1.76
NETMASK=255.255.255.0
NETWORK=192.168.1.0
ONBOOT=yes

• Modify System Limits (/etc/security/limits.conf) to allow SIPp process to open a large number of sockets, and add:

* soft nofile 102400
* hard nofile 409600

IMS Bench SIPp

Page 6
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://search.cpan.org/dist/XML-Simple/
http://gnuplot.sourceforge.net/


2.3. Building IMS Bench SIPp components

To build SIPp and the manager in the way appropriate for the benchmark, perform the following make invocations:
cd ims_bench
make rmtl
make ossl
make mgr

Alternatively, the default make invocation (no argument) will build all these components as well as cpum, the system resource monitoring component. This might
however not be what you need as the latter must be built on the system where it needs to run, i.e. the SUT, which might not be compatible with binaries built on your
test systems.

To build cpum on the SUT, you will need the GNU development toolchain on your SUT or on compatible development environment. You can then copy the IMS
Bench SIPp source tree and simply build cpum and its required dependencies:
make rmtl (on the SUT)
make cpumem (")

3. Using IMS Bench SIPp

3.1. Configuration

When configuring the test system for a benchmark run, there are two possible approaches:

1. Use the ims_bench.pl perl script to enter the benchmark parameters using a menu driven user interface and automatically generate all the necessary configuration
files and execution scripts

2. Configure all elements manually

Obviously the first approach is the easiest but is somewhat limited to configuring benchmark runs in close accordance to the TS 186 008 specification. As IMS Bench
SIPp is based on SIPp which was already very flexible and as the new features and new components (Manager, CpuMem...) were designed in the same spirit, one may
configure quite a large variety of benchmark runs. When configuring manually however, the benchmark parameters as specified in TS 186 008 do not appear as
clearly anymore since many of them are implemented using SIPp features that were not directly implemented based on that specification. For this reason, the names
don't match and some parameters of the specification may be linked to multiple configuration bits in the IMS Bench SIPp configuration.

3.1.1. Manager Configuration

The configuration file for the manager, manager.xml, is an XML file with one global configuration section and one or more "run" sections.

If you used the ims_bench tool to configure your benchmark run, it will have generated this file for you in a target directory. Otherwise, you can start from the

IMS Bench SIPp

Page 7
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



example manager.xml file provided in the source tree.

• <configuration> section
This section of the manager configuration contains the global configuration (independent of the individual "runs" defined in subsequent sections).

• global parameters
Each parameter entry is specified using the following syntax: <param name="name" value="value"/>

Possible parameters are described in the table below:

number_test_systems Number of Test Systems that the
manager will wait for before starting the
load generation. A value of 0 indicates
that the manager should start
immediately with the number of SIPp
instances connected at the time the user
presses the 'e' key. When the manager
is used in full automatic mode (-e
command line flag), a non-0 value must
be specified.

prep_offset Time (in milliseconds) allocated for the
preparation portion (usually dedicated to
the user reservation procedure) of a
client-side scenario before its real SIP
scenario portion is expected to start
(according to the scenario initiation
distribution). This is the scenario portion
between the start and the <sync>
command of the scenario. Once the
scenario reaches its <sync> command,
SIPp will put it to sleep until the time the
SIP scenario was scheduled to start.
This parameter should be set to a value
high enough to guarantee that all
scenarios can reach their <sync>
command in advance of their actual
scheduled start time, but not too large in
order not to have too many users
"consumed" by scenarios in their
preparation phases (risk of running out

IMS Bench SIPp

Page 8
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



of users).

rand_seed Initial seed value that will be distributed
to all random number generators in the
complete test system to compute their
own individual seed value (this seed
value is derived from the global
rand_seed value, the SIPp instance ID
and the specific random generator it is
used for). This scheme guarantees that
each SIPp instance starts at a different
place in the pseudo-random sequences
it uses and still allows re-generating
almost exactly the same load as for a
previous run by assigning the same
rand_seed value.
A value of 0 tells the manager to
generate the seed at random. The
actual rand_seed value used is always
logged into the report.xml file generated
by the manager so that one can then
later force the rand_seed to this value to
re-generate almost the exact same load.

report Report generation (1 = generate report;
0 = don't generate). Must be set to 1 in
order to be able to use the report
generation tool.

log Manager logging (0 = disabled; 1 =
enabled). The manager can log details
of its activities in a manager.log file. This
includes the same data as the manager
screen output with the highest verbosity.

transient_time Transient time (in seconds) at the
begining of each step (change in the
load applied to the SUT) during which
scenario outcomes are ignored when
computing the IHS percentage
(percentage of Inadequately Handled

IMS Bench SIPp

Page 9
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



3.2. Benchmark Execution

3.2.1. Running

In case you configured your test system using the ims_bench Perl script, you will have received detailed instructions at time of exiting the configuration tool. Please
follow those instructions which will guide you through the deployment of the components (using the prepare.sh script) on the systems used for the test and the
starting of all components (manager and SIPp instances).

In all cases, the first step is to start the manager on the system that you intend to use as central controller for the benchmark.
./manager [-f manager.xml]

It will then read its configuration file and wait for SIPp agents and resource monitoring agents (cpum) to connect.

The next step consists in starting the SIPp instances. Each instance must be started with the necessary options to make it use the IP address(es) you configured for it, to
connect back to the manager as remote control and to load the user information for the users it will represent. The file containing the user data must be present on the
system where the SIPp instance runs. The scenario files however are not needed locally since they will be sent over the network by the manager.
Each instance should also have its test system ID specified by means of the -i option (although this is optional, it simplifies things a bit because SIPp will then be able
to use, in csv file names for example, this TS ID which is guaranteed to be unique even across multiple systems, instead of the local process id). The -trace_scen and
-trace_retrans options are also required if you want to generate a report for the run (usually the case).

Here is an example of the command to issue on one of the test systems to start one of the SIPp instances, assuming that the manager is at 192.168.1.1, that the instance
will use 192.168.1.20 and that the SUT is at 192.168.1.100 and listens for SIP traffic on UDP port 5060:
./sipp -id 1 -i 192.168.1.20 -user_inf ./ims_users_1.inf

-rmctrl 192.168.1.1:5000 192.168.1.100:5060
-trace_err -trace_cpumem -trace_scen -trace_retrans

If you used the ims_bench tool to prepare the benchmark configuration, it will have created the necessary scripts for you (run_x.sh) and you can simply start those
on the test systems as you'll have been instructed by the tool.

If you have built the resource monitoring tool - cpum - for your system under test, you should start it on the SUT now (unless it's already running from a previous
run). It will connect to the manager and report the SUT CPU and memory utilization data.
./cpum 192.168.1.1:5000 (on the SUT)

You can watch on the console of the manager, the various systems connecting to it. Once all components are started, you can start the actual execution by pressing the
'e' key in the manager console.

While the test system manager executes the runs according to its configuration, it also monitors the percentage of inadequately handled scenarios (IHS) during each
step, and decides, based on the configured maximum value allowed for the IHS percentage, whether to perform the next step, increasing the load on the SUT, or not.

IMS Bench SIPp

Page 10
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



As the manager moves from step to step within a configured run and from one run to the next, it writes these transitions to a report file it generates. This report file,
report.xml, also contains information about the test systems used, the overall benchmark configuration, etc.

Once the IHS threshold has been exceeded, the manager instructs the SIPp instances to stop applying load to the SUT and reports that the test is finished. You can then
press the 'q' key in the manager console. This will stop all connected SIPp instances and the manager itself.

3.2.2. Gathering Results

As each SIPp instance dumps most of its statistics on the local system it runs on (that's because sending it in real time to the manager could make the manager a
bottleneck in the system), if you used multiple physical systems to execute the benchmark, you will need to gather together the csv files from each SIPp instance. In
addition, prior to running the report generation tool, it is required to merge together the data from all the SIPp instances.
A simple script is provided that reads the manager report file to learn the IP addresses of the test systems and the PID or TS ID of their SIPp instances, then grabs the
corresponding files using scp and merges them together (assuming you are in a subdirectory as created by ims_bench script or that you created yourself for the
execution):
../scripts/getResults.pl

In case you copied the files manually from the test systems, you can use the same script to only perform the merging operation:
../scripts/getResults.pl -merge

This merging operation can take some time if the amount of data collected was very large. It produces the following files:

• sipp.csv resulting from the merge of all sipp_TS<ts_id>_scen.csv files
• sipp_retrans.csv resulting from the merge of all sipp_TS<ts_id>_retrans.csv files

Note: After the merge completes, you can delete the partial files by running
../scripts/getResults.pl -clean
But be sure the merge operation completed successfully (e.g. did not run out of disk space!) as the original files will be deleted (but only on the local system, not on
the remote location where the SIPp instances actually executed - unless it is the same machine and location).

3.2.3. Screens and Keys

3.2.3.1. Manager

• Main keyboard keys:
Key Description

# Change the display verbosity level

IMS Bench SIPp

Page 11
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



e Execute the benchmark

0-9,<,>,D,q Keys are directly sent to all SIPp clients

T Measure the time difference in micro
seconds (Manual/Debug)

t Request the Date Time Stamp in text format
(Manual/Debug)

g Request Counters (Manual/Debug)

r Reset Clients (Manual/Debug)

l Load Scenarios (Manual/Debug)

W/w Request CPU (Manual/Debug)

• When starting, the manager displays a summary of the configuration and the requested runs.

• After launching the benchmark execution (pressing 'e' key), the manager starts executing the runs. The first run could for example consist in a pre-registration
phase where a certain percentage of the user population is registered with the SUT before the actual benchmark run really starts. In this example, only the ims_reg
scenario is active.

• At run time, the manager displays global summary and the current percentage of Inadequately Handled Scenarios for the step. If cpumem is connected, the cpu
utilization of the SUT(s) will be reported too.

3.2.3.2. CpuMem

• The following screen represents the CpuMem utility output.

There is no runtime key. Press ctrl-c to exit the utility.

3.2.3.3. SIPp

• Main keyboard keys:

Key Description

<,> Select a particular scenario. Most data
displayed on the screen is related to the

IMS Bench SIPp

Page 12
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



currently selected scenario.

1 Switch to the 'Scenario' screen

2 Switch to the 'Statistics' screen

3 Switch to the 'Repartition' screen

4 Switch to the 'Variables' screen

5 Switch to the 'TDM map' screen

6,7,8,9,0 Switch to the corresponding 'Secondary
repartition' screen ('6' for RTD 1, '7' for RTD
2, etc.)

D Debug screen (dump internal variables)

• Key '1': Scenario screen. It displays a call flow of the scenario as well as some important informations.
• Screen Layout

<TS_id>- <scenario_name>-<scen_slot>- Scenario Screen - [1-9]: Change Screen - <PID>
Client:

Call-rate(length) Port Total-time Total-calls Remote-host
[Desactivated](0 ms)/1.000s 5060 10.00 s 0 <sut_address>(<UDP or TCP>)
0 new calls during 1.000 s period 1 ms scheduler resolution
0 calls (limit 0) Peak was 0 calls, after 0 s
0 Running, 0 Paused, 0 Woken up, 0 Sync
0 out-of-call msg (discarded)
0 open sockets

Server:

Port Total-time Total-calls Transport
5060 695.00 s 0 <UDP or TCP>

0 new calls during 1.000 s period 1 ms scheduler resolution
0 calls Peak was 0 calls, after 0 s
0 Running, 0 Paused, 0 Woken up, 0 Sync
0 open sockets

The following screenshots give examples with some of the scenarios included with IMS Bench SIPp.

• IMS Registration Scenario

IMS Bench SIPp

Page 13
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• IMS UAC Scenario

• IMS Messaging (Client) Scenario

• IMS UAS Scenario

• Key '2': Statistics screen. It displays the main statistics counters. The "Cumulative" column gathers all statistics, since SIPp has been launched. The "Periodic"
column gives the statistic value for the period considered (specified by -f frequency command line parameter).

IMS Bench SIPp

Page 14
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• Key '3': Repartition screen. It displays the distribution of response time and call length, as specified in the scenario.

• Key '4': Variables screen. It displays information on actions in scenario as well as scenario variable information.
• IMS Registration scenario

• IMS UAC scenario

IMS Bench SIPp

Page 15
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



3.3. Generating Reports

A perl script, doReport.pl, can be used to generate a report in MHT format (Multipurpose Internet Mail Extension HTML - RFC 2557), containing graphs and
statistics about the test.

Note: As of this writing, the Mozilla Firefox browser did not support this format out of the box. Microsoft Internet Explorer 6 supports it natively. Although the MHT
format is very convenient to group the HTML and picture files, one can also view the HTML directly as long as the picture files remain at the same relative paths.

This tool takes as input data from the following sources:

• SIPp metrics data contained in the merged csv files (resulting from the usage of the getResults.pl script (scenario attempts, outcome, timings).
• CPU and memory utilization data gathered from the cpum resource monitoring tool running on the System Under Test and on the test systems
• general information about the run (step start times, scenario attempt rate,...) from the file generated by the manager during the benchmark run (report.xml)
• metric related information (name, mapping with csv file...) from the XML scenario files.

The report is made up of multiple sections. The first section, the summary, is only configurable as far as the static text included is concerned and is otherwise built
automatically by the tool. The subsequent sections contain graphs and statistics tables representing measurements like Scenario Attempts per Second (SAPS),
response times, CPU utilization, etc. Those are configurable. See below for details on the report configuration.

3.3.1. Configuring the Report Content

The configuration for the report generation tool is located in the reportConfig.xml file (default - can be overwritten on the command line). It tells the tool which
graphs must be plotted, gives descriptions and titles for these graphs and also contains some general parameters.

The reportConfig.xml file included in the source tree allows you to generate a report matching the requirements of the ETSI TS 186 008 specification (within the
existing limitations of the current IMS Bench SIPp implementation). You only need to modify this file if you intend to change what data is reported (for example you
added new scenarios for a new use case) or the way the data is presented (type of graph, legend, description...).

3.3.1.1. General parameters

DisplayFailureStep Set to 0 to prevent the failure step from
appearing in time based graphs. This is usually
set to 1.

DisplayFailureStepHistograms Set to 1 to show the Failure Step in the
Histograms. This is usually set to 0, as failure
steps usually contain very few data and tend to

IMS Bench SIPp

Page 16
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



render the other histograms unreadable.

DisplayConstantHistograms Set to 1 to display constant steps in histograms.
This is usually 0, as otherwise histograms for
other steps often become unreadable.

size # x and size # y Horizontal and vertical size of the graphs

3.3.1.2. Graphs

All measurements can be represented as time based graphs and/or as histograms.

Time based graphs usually have the time as X-coordinate, the measure as Y1-coordinate and SAPS as Y2-coordinate. The SAPS (scenario attempts per second) in
such graphs can be calculated for the whole system (default), per use case (use case attempts per seconds, for example grouping together REGISTER, DE-REGISTER
and RE-REGISTER scenarios) or per scenario (only REGISTER scenarios per second for example).

Each graph is configured within a <measure> section in the report configuration. As already mentioned, a measure can be evaluated for the whole system (default), in
which case the <measure> section should appear at the top-level (within <config> section). But the measure can also be done per use case, in which case the
<measure> section should appear within the corresponding <use_case> section.
Finally, the measure can also be done per scenario, in which case the <measure> section must appear within a <scenario> section.
Use case names and scenario names are the names referenced in the scenario XML files. Check out the provided default reportConfig.xml file for examples.

The following parameters describing the way to present the measurement may appear within a <measure> section: (parameters in italic are optional):

Title Title of the Graph, as it will appear in the report

Description Description of the data being measured to be
displayed in the report

Source The Source can be either one of the following
keyword :
• SAPS - Session attemps per seconds
• ALL-SIPP-CPU - CPU of all SIPp (one graph

per system where SIPp instances are running)
• ALL-SIPP-MEM - Memory of all SIPp (one

graph per system where SIPp instances are
running)

• Ratio - Not a graph but just a way to measure the
actual ratio of appearance of the various
scenarios and have it displayed in the summary

IMS Bench SIPp

Page 17
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



table.
• IHS - Inadequately handled scenarios per

seconds
• DELAY-SAPS - Delay between two scenario

attempts
• RETRANSMIT - Number of Retransmits per

seconds
• <metric_name> - PX_TRT-REG1 or any of the

metric defined in the XML scenario files

AxeX Description of X axis

AxeY Description of Y axis

Ignore If set, no graph is generated for the
measurement (easy way to add/remove graphs
without actually removing them from the
reportConfig.xml file)

UnitX Scaling factor along the X axis. For instance,
time is reported in the csv files as milliseconds,
while it makes more sense to display it as
seconds in the report; hence, UnitX would be
1000.

UnitY Scaling factor along the Y axis (same as UnitX,
but for Y-coordinate). For instance, response
times in csv files are in micro-seconds, while
milliseconds would be more appropriate for most
graphs; UnitY would then be 1000.

LegendY The legend to associate with the plot of the
measurement.

InSummary If present, the data (mean value over each step)
is also included in the summary table at the
beginning of the report. The parameter value is
used as heading in the summary table.

Logscale If set, the graph is logarithmic and the value of
this parameter is used as minimum value to

IMS Bench SIPp

Page 18
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



display.

DistAndHistoUnit Grouping Unit for DistrBasedGraph and
ProbaBasedGraph graphs. Metrics related data
from csv files (timestamps) are in microseconds,
but when making histograms, it is probably
desired to group data as otherwise there would
be too few measurements at the exact same
value to build a meaningful histogram. If set to
100 for instance, it means that histogram unit
will be 100 micro-seconds and all data will be
rounded up to 100 micro-seconds. If, at the
same, time UnitY is set to 1000 (milli-seconds),
the resulting histogram will have 10 points
(1000/100) for each milliseconds.

Measurements can be plotted in different forms. All forms can be used for all measurements, but some forms are more appropriate than others for some
measurements. The type of graph for measurement is specified by including one of the following parameters within the <measure> section.

MeanBasedGraph In the 'MeanBasedGraph' format, the
measurements are presented as mean per
second. This is useful for metrics for instance.

TimeBasedGraph In the 'TimeBasedGraph' graph format, the raw
measurement data is plotted. Obviously, this
graph can be used for any measurements like
CPU, memory, retransmit per second (which, by
definition, are already per second, and for which
calculating a mean per second would not bring
anything).
It can also be used for plotting delay between
two scenarios for instance (because the mean
per second does not have that much sense in
this case).

DistrBasedGraph In the 'DistrBasedGraph' graph format, data are
shown in the form of an histogram. This graph
can be used for instance for plotting SAPS
(allowing to verify that the generated load
follows the expected random distribution), or
other metrics for which it is interesting to see the

IMS Bench SIPp

Page 19
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



way the values are distributed.

ProbaBasedGraph This type of graph shows the probability of a
measure to be higher than a certain value.
Mathematically speaking, it is 1 - integral
(histogram). It is very helpful as it can be used to
deduce various percentile values.

Table 2: Types of graphs
Each of the four graph types can have sub-parameters:

For all graph types

Description Specific description for the graph

bezier If set to 1, a bezier curve is included on the
graph. This is usually useful for Time- and
Mean- based graphs.

Theoretical If set, a theoretical curve is plotted in addition to
the actual measurement. Supported values are
'Poisson' and 'Expo'.
This is helpful in comparing Poisson or
Exponential distributions to their expected
theoretical curve.

For Mean- and Time- based graph types

Source If specified within a Mean- or Time- based graph
section, this indicates the source of a second
data set to be plotted on the same graph as the
primary one (multi-plot graphs). The parameter
can take the same values as described above
when used for the primary graph (at the
<measure> level).

AxeY For a multi-plot graph, specifies the text to show
along the second Y axis (for the data coming
from the second source).

LegendY For a multi-plot graph, specifies the text to use
as legend associated with the second plot.

IMS Bench SIPp

Page 20
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



3.3.2. Executing doReport.pl

The help screen of doReport.pl shows the command line options it supports:

Syntax: doReport.pl [-r <report_file>] [-c <report_config_file>]
[-i <ims_bench_file>] [-F<0|1>]

-r specifies the raw benchmark report file (default: report.xml) resulting
from the run you want to generate a graphical report for.

-c specifies the configuration file for this script (default: reportConfig.xml)
-b specifies an optional benchmark info HTML fragment file to include as

introduction in the report (a default generic sentence is otherwise provided)
-i specifies the ims_bench config file (in case the benchmark run was

configured using the ims_bench script), containing IMS benchmark parameters.
-F specifies whether gnuplot should be forked (to benefit from multiple CPU

cores). -F0 disables the forking (default: enabled)
-? to get this help.

doReport.pl expects to find the csv data files, the report.xml file and the scenario files in the current directory. You can however execute it from anywhere where you
have these files present as it will look for its own files (reportConfig.xml unless specified through -c command line option, some small picture files, etc.) at the path
present in the command line.
It is therefore common to execute it from the same location where you ran the manager during the benchmark run (the ims_bench_xyz directory in case the benchmark
run was prepared by the ims_bench tool).
For example:
../scripts/doReport.pl -i ims_bench.xml

You can however overwrite the reportConfig.xml file as well as the logo file (logo.png - displayed in the top left corner of reports) by putting your own versions of
these files in the current directory. doReport.pl first looks for them in the current directory and then at the same location where the script itself resides.

4. Concepts and Features

4.1. Multi-scenario mode

A key feature in IMS Bench SIPp is its support for multiple scenarios within a single SIPp instance. Multiple scenarios are uploaded by the manager to the SIPp
instance(s) and each call is executing one of the scenarios.

Scenarios can be classified as either client-side or server-side. A client-side scenario is a scenario that starts by initiating a SIP transaction or a non-SIP message
exchange with a partner SIPp instance (usually in a preparation phase of the scenario where scenario and user reservation is performed).

IMS Bench SIPp

Page 21
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



A server-side scenario is one that starts by the reception of the first message of a SIP transaction or the reception of a message from a partner SIPp instance.

Client-side scenarios are initiated by the SIPp instances according to the scenario initiation scheduling (e.g. Poisson distribution of the delays between two consecutive
scenarios) and start executing their sequence immediately. The exact scenario to execute from the list of client-side scenarios loaded is selected at random according to
the configured relative occurrences of the scenarios in the scenario mix.
In the benchmark configuration, client-side scenarios are identified by the fact that they have a ratio attribute that specifies their relative occurrence in a specific run
section of the benchmark configuration (See also Manager Configuration - <run> sections).

In IMS Bench SIPp, server-side scenarios are only instantiated when receiving, from a partner SIPp instance executing a client-side scenario, a request for preparing
execution of a specific server-side scenario. The client-side scenario is therefore the controlling side and a server-side scenario always has at least one associated
client-side scenario that will trigger its invocation. If a server-side scenario has no client-side counterpart in the benchmark configuration, it will never be executed.

A client-side scenario Si running on SIPp instance X requests a partner SIPp instance Y (association made at random for the duration of the call) to instantiate the
server-side scenario Si' by sending a non-SIP req_user message to Y, telling it the ID of the server-side scenario to instantiate as well as the SIP URI of the
emulated user at X from whom the first SIP message of the actual SIP scenario portion will come (SIP From header). SIPp instance Y will then be ready to receive
this first SIP message and will match it, based on the received From header, with the call instantiated for the server-side scenario Si'. SIPp instance Y will then update
its internal SIP CallId map so that it can, from then on, directly dispatch subsequent messages for the same call to the corresponding call running the Si' scenarion.

Note: This fairly complex mechanism was designed to allow multiple SIPp instances to place calls between them through a System Under Test that could potentially
modify the SIP CallId between both call legs. This is typically the case with SUTs behaving as a B2BUAs. IMS Bench SIPp should work in the situation just the same
way as it works with SUTs that simply proxy the calls leaving the CallId unmodified. It also provides for a very realistic test system where a specific test system agent
(SIPp instance) from the setup not only places calls towards itself but also to all other test system agents. Otherwise, users represented by a SIPp instance X would
only call (or interact with) other users also represented by SIPp instance X.

Warning:

This user and scenario reservation procedure requires that the user at the server-side be only reserved for one single inbound scenario at a time because otherwise, there would be a risk that another call from the same originating user at
the client-side arrives at approximately the same time and that they get matched against the incorrect reserved scenario.

For example, user A executing a messaging scenario Si and a calling scenario Sj towards the same user B at almost the exact same time could end up in server-side scenario Si' (counterpart of Si) being associated with the CallId of the
calling scenario and vice-versa. This would obvisouly lead to failures because the expected messages at the server-side are different for both scenarios. And this failure would be due to the test system only. One must therefore carefully
design the scenarios so the user is locked between the time it is reserved and the time the association with the SIP CallId is made (i.e. when the first SIP message is received at the server-side).

4.2. User oriented mode

Also quite central to IMS Bench SIPp for its implementation of the IMS Performance Benchmark is its user oriented mode. It is triggered by the usage of the
-user_inf command line parameter which specifies a file containing data for the SIP users that the SIPp instance will represent in its interactions with the SUT.

IMS Bench SIPp

Page 22
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



The way this is implemented is very simple and relies on the following basic elements:

1. SIPp maintains user entities that contain static data fields, and variables
2. SIPp also maintains a set of user pools into which users are placed. The actual meaning of these pools is really defined by the way the scenarios use them but they

are meant to loosely represent user state.
3. New actions allow XML scenarios to assign a user from a specific pool to a call (scenario instance) and to move the currently assigned user to a different pool.

This effectively gives a meaning to each pool. For example, a registration scenario will always pick users from a pool that represents the not-registered users, and
upon successfull registration will move them to the pool of registered users. A successful calling scenario would then pick users from the pool of registered users,
etc.

4. Similarly to call variables, values resulting for example from regular expression matching can be assigned to user variables of the user currently assigned to the
call. The interest of user variables vs call variables is that they preserve their value between multiple scenario invocations. For example, the Service-Route header
returned during a registration can be stored in a user variable in then later injected as Route header in the INVITE a calling scenario creates.

In UDP mode, IMS Bench SIPp will assign a different combination of IP address and UDP port number to each user that it represents. This makes the traffic more
realistic. It will distribute the users on one IP address or optionally, on several configured IP addresses, and then on the available ports on that address (see also SIPp
Transport Modes).

In TCP mode, each IMS Bench SIPp instance has a single IP address and creates one pair of TCP sockets to the SUT. The first socket is used for server side scenarios,
and the second one is used for client side scenarios. All users represented by the SIPp instance share this single pair of TCP sockets.

4.3. Time Metrics

SIPp supports starting timers and stopping timers. It also supports specifying timeouts on <recv> commands. However, the original SIPp did not provide a way to
verify that a measured time (called Response Time Duration, RTD) is within an allowed range for the scenario to be considered as correctly handled unless it exactly
matched a receive timeout. IMS Bench SIPp provides such a mechanism by which a call can be marked as inadequately handled if one of the measured RTD exceeds
a predefined maximum value, even though the scenario executed correctly from the sequence and SIP protocol point of view.

This is then reflected in statistics as well as in the percentage of inadequately handled scenarios that the IMS Bench manager determines at run-time when deciding
whether to move to a next step in the load profile or not.

In IMS Bench SIPp, the timing measurements that must be collected in the scenario CSV result file (when using the -trace_scen option) and that can be checked
against a specified maximum value are called "metrics".

These metrics are defined within the scenario file in a new <info> section, as in the following example:

<info>
<metric ref="PX_TRT-REG1" rtd="1" max="2000"/>
<metric ref="PX_TRT-REG2" rtd="2" max="4000"/>

IMS Bench SIPp

Page 23
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



</info>

The above example defines two time metrics to be checked against corresponding maximum values. For each metric, the RTD (SIPp timer) into which it will be
computed by the scenario is specified as well as the maximum accepted value.

The checks are done at the end of the scenario execution (if successful from a message sequence and protocol timeouts point of view), and in case a maximum value is
exceeded, the call is marked as failed.

The metric name specified in the ref attribute is not used by SIPp itself but by the report generation tool. It makes the link between the time metric name (for
example as defined in a benchmark specification) and the RTD used to measure it within the SIPp scenario.

In the example above, the first metric is declared to be computed in RTD 1 and is not allowed to exceed 2000 milliseconds. The second one is computed in RTD 2 and
may not exceed 4000 ms. The RTD values result from the usage of the start_rtd and rtd attributes on <send> or <recv> commands, or from computations performed
on RTD values by RTD related Actions.

The <metric> elements also tell SIPp which rtd values to dump into the scenario CSV result file when the -trace_scen command line option is used. Also note
that the max attribute is actually optional so that it's possible to dump an RTD to the scenario CSV file even when it does not need to be checked against a maximum
value.

4.4. Traffic control

In IMS Bench SIPp, the traffic is controlled by the benchmark manager according to its configuration. The SIPp instances generate SIP traffic (scenario mix, average
number of new scenario attempts per second) according to the instructions they receive from the manager. The traditional keys used in the original SIPp to control the
number of calls started per second are disabled in IMS Bench SIPp mode.

You can still pause the traffic by pressing the 'p' key and resume it by pressing 'p' again, but this will of course disturb your benchmark run. SIPp will stop placing
new calls and will continue executing the scenario of already running calls.

In IMS Bench mode, SIPp normally quits when you press 'q' in the console of the manager or when the manager exits.

The 'q' key is however still handled in the SIPp instance as well. If you press it, SIPp will stop placing new calls and will wait until all current calls go to their end.
During this phase, SIPp will regularly look at all calls that are executing a pause command and will shorten the duration of this pause so as to speed up the exit while
still trying to complete all calls in their normal flow. SIPp will then exit.

You can also force SIPp to quit immediatly by pressing the 'Q' key, or by pressing the 'q' key again several times. Current calls will be terminated by sending a BYE
or CANCEL message (depending if the calls have been established or not).

5. Writing XML Scenarios

IMS Bench SIPp

Page 24
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



IMS Bench SIPp comes with a set of scenarios to execute the IMS/NGN Performance Benchmark and some additional scenarios to use the IMS Bench SIPp test
system against simpler SIP servers. You might however need to adapt those to your needs or write new scenarios for your particular testing or benchmarking needs.

A SIPp scenario is written in XML (a DTD that may help you write SIPp scenarios does exist and has been tested with jEdit - this is described in a later section). A
scenario will always start with:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<scenario name="Some name">

And end with:
</scenario>

Easy, huh? Ok, now let's see what can be put inside. You are not obliged to read the whole table now! Just go in the next section for an example.

Command Attribute(s) Description Example

<send> retrans Used for UDP
transport only: it
specifies the T1 timer
value, as described in
SIP RFC 3261, section
17.1.1.2.

<send
retrans="500">: will
initiate T1 timer to 500
milliseconds (RFC3261
default).

start_rtd Starts one or more of
the 5 "Response Time
Duration" timer. (see
statistics section).

<send
start_rtd="2,3">:
the timers number 2
and 3 will start when
the message is sent.

rtd Stops the listed
"Response Time
Duration" timer.

<send rtd="2,
4">: the timers
number 2 and 4 will
stop when the
message is sent.

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<send
crlf="true">

lost Emulate packet lost.
The value is specified
as a percentage.

<send lost="10">:
10% of the message
sent are actually not

IMS Bench SIPp

Page 25
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



sent :).

next You can put a "next" in
a send to go to another
part of the script when
you are done with
sending the message.
See conditional
branching section for
more info.

Example to jump to
label "12" after sending
an ACK:
<send

next="12">
<![CDATA[

ACK
sip:[service]@[remote_ip]:[remote_port]
SIP/2.0

Via: ...
From: ...
To: ...
Call-ID:

...
Cseq: ...
Contact:

...
Max-Forwards: ...

Subject:
...
Content-Length: 0

]]>
</send>

test You can put a "test"
next to a "next"
attribute to indicate
that you only want to
branch to the label
specified with "next" if
the variable specified
in "test" is set (through
regexp for example).
See conditional
branching section for
more info.

Example to jump to
label "6" after sending
an ACK only if variable
4 is set:
<send next="6"

test="4">
<![CDATA[

ACK
sip:[service]@[remote_ip]:[remote_port]
SIP/2.0

Via: ...
From: ...
To: ...
Call-ID:

...
Cseq: ...

IMS Bench SIPp

Page 26
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Contact:
...
Max-Forwards: ...

Subject:
...
Content-Length: 0

]]>
</send>

counter Increments the counter
given as parameter
when the message is
sent. A total of 5
counter can be used.
The counter are saved
in the statistic file.

<send
counter="1">:
Increments counter #1
when the message is
sent.

<recv> response Indicates what SIP
message code is
expected.

<recv
response="200">:
SIPp will expect a SIP
message with code
"200".

request Indicates what SIP
message request is
expected.

<recv
request="ACK">:
SIPp will expect an
"ACK" SIP message.

optional Indicates if the
message to receive is
optional. In case of an
optional message and
if the message is
actually received, it is
not seen as a
unexpected message.

<recv
response="100"
optional="true">:
The 100 SIP message
can be received
without being
considered as
"unexpected".

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<recv
crlf="true">

IMS Bench SIPp

Page 27
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



rrs Record Route Set. if
this attribute is set to
"true", then the
"Record-Route:"
header of the message
received is stored and
can be recalled using
the [routes] keyword.

<recv
response="100"
rrs="true">.

auth Authentication. if this
attribute is set to "true",
then the
"Proxy-Authenticate:"
header of the message
received is stored and
is used to build the
[authentication]
keyword.

<recv
response="407"
auth="true">.

start_rtd Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

<recv
start_rtd="4">: the
timer number 4 will
start when the
message is received.

rtd Stops one of the 5
"Response Time
Duration" timer.

<recv rtd="4">: the
timer number 4 will
stop when the
message is received.

lost Emulate packet lost.
The value is specified
as a percentage.

<recv lost="10">:
10% of the message
received are thrown
away.

action Specify an action when
receiving the message.
See Actions section for
possible actions.

Example of a "regular
expression" action:
<recv
response="200">
<action>
<ereg

regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*"

IMS Bench SIPp

Page 28
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



search_in="msg"
check_it="true"
assign_to="1,2"/>
</action>
</recv>

next You can put a "next" in
an optional receive to
go to another part of
the script if you receive
that message. See
conditional branching
section for more info.

Example to jump to
label "5" when
receiving a 403
message:
<recv

response="100"
optional="true">
</recv>
<recv

response="180"
optional="true">
</recv>
<recv

response="403"
optional="true"
next="5">
</recv>
<recv

response="200">
</recv>

test You can put a "test" in
an optional receive to
go to another part of
the script if you receive
that message only if
the variable specified
by "test" is set. See
conditional branching
section for more info.

Example to jump to
label "5" when
receiving a 403
message only if
variable 3 is set:
<recv

response="100"
optional="true">
</recv>
<recv

response="180"
optional="true">
</recv>
<recv

response="403"
optional="true"
next="5"
test="3">

IMS Bench SIPp

Page 29
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



</recv>
<recv

response="200">
</recv>

chance In combination with
"test", probability to
actually branch to
another part of the
scenario. Chance can
have a value between
0 (never) and 1
(always). See
conditional branching
section for more info.

<recv
response="403"
optional="true"
next="5" test="3"
chance="0.90">
</recv>

90% chance to go to
label "5" if variable "3"
is set.

counter Increments the counter
given as parameter
when the message is
received. A total of 5
counter can be used.
The counter are saved
in the statistic file.

<recv
counter="1">:
Increments counter #1
when the message is
received.

regexp_match Boolean. Indicates if
'request' ('response' is
not available) is given
as a regular
expression. If so, the
recv command will
match against the
regular expression.
This allows to catch
several cases in the
same receive
command.

Example of a recv
command that
matches MESSAGE or
PUBLISH or
SUBSCRIBE requests:
<recv
request="MESSAGE|PUBLISH|SUBSCRIBE"
crlf="true"
regexp_match="true">
</recv>

<pause> milliseconds Specify the pause
delay, in milliseconds.
When this delay is not
set, the value of the -d

<pause
milliseconds="5000"/>:
pause the scenario for
5 seconds.

IMS Bench SIPp

Page 30
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



command line
parameter is used.

variable Indicates which call
variable to use to
determine the length of
the pause.

<pause
variable="1" />
pauses for the number
of milliseconds
specified by call
variable 1.

distribution Indicates which
statistical distribution to
use to determine the
length of the pause.
Without GSL, you may
use uniform or
fixed. With GSL,
normal, exponential,
gamma, lambda,
lognormal, negbin,
(negative binomial),
pareto, and weibull are
available. Depending
on the distribution you
select, you must also
supply distribution
specific parameters.

The following
examples show the
various types of
distributed pauses:
• <pause

distribution="fixed"
value="1000"
/> pauses for 1
second.

• <pause
distribution="uniform"
min="2000"
max="5000"/>
pauses between 2
and 5 seconds.

The remaining
distributions require
GSL. In general The
parameter names were
chosen to be as
consistent with
Wikipedia's distribution
description pages.
• <pause

distribution="normal"
mean="60000"
stdev="15000"/>
provides a normal
pause with a mean of
60 seconds (i.e.

IMS Bench SIPp

Page 31
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



60,000 ms) and a
standard deviation of
15 seconds. The
mean and standard
deviation are
specified as integer
milliseconds. The
distribution will look
like:

• <pause
distribution="lognormal"
mean="12.28"
stdev="1" />
creates a
distribution's whose
natural logarithm has
a mean of 12.28 and
a standard deviation
of 1. The mean and
standard deviation
are specified as
double values (in
milliseconds). The
distribution will look
like:

• <pause
distribution="exponential"
mean="900000"/>
creates an
exponentially

IMS Bench SIPp

Page 32
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



distributed pause
with a mean of 15
minutes. The
distribution will look
like:

• <pause
distribution="weibull"
lambda="3" k
="4"/> creates a
Weibull distribution
with a scale of 3 and
a shape of 4 (see
Weibull on
Wikipedia
(http://en.wikipedia.org/wiki/Weibull_distribution)
for a description of
the distribution).

• <pause
distribution="pareto"
k="1"
x_m="2"/> creates
a Pareto distribution
with k and xm of 1
and 2, respectively
(see Pareto on
Wikipedia
(http://en.wikipedia.org/wiki/Pareto_distribution)
for a description of
the distribution).

• <pause
distribution="gamma"
k="3"
theta="2"/>
creates a Gamma
distribution with k
and theta of 9 and 2,

IMS Bench SIPp

Page 33
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Pareto_distribution
http://en.wikipedia.org/wiki/Pareto_distribution


respectively (see
Gamma on
Wikipedia
(http://en.wikipedia.org/wiki/Gamma_distribution)
for a description of
the distribution).

• <pause
distribution="negbin"
p="0.1"
n="2"/> creates a
Negative binomial
distribution with p
and n of 0.1 and 2,
respectively (see
Negative Binomial
on Wikipedia
(http://en.wikipedia.org/wiki/Negative_binomial_distribution)
for a description of
the distribution).

• <pause
distribution="poisson"
mean="60000"/>
creates a Poisson
distribution with a
mean of 60s (see
Poisson distribution
on Wikipedia
(http://en.wikipedia.org/wiki/Poisson_distribution)
for a description of
the distribution).

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<pause
crlf="true">

next You can put a "next" in
a pause to go to
another part of the
script when you are
done with the pause.

Example to jump to
label "7" after pausing
4 seconds:
<pause
milliseconds="4000"

IMS Bench SIPp

Page 34
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Poisson_distribution


See conditional
branching section for
more info.

next="7"/>

<nop> action The nop command
doesn't do anything at
SIP level. It is only
there to specify an
action to execute. See
Actions section for
possible actions.

Execute the
play_pcap_audio/video
action:
<nop>
<action>
<exec

play_pcap_audio="pcap/g711a.pcap"/>
</action>

</nop>

start_rtd Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

<nop
start_rtd="1">: the
timer number 1 starts
when nop is executed.

rtd Stops one of the 5
"Response Time
Duration" timer.

<nop rtd="1">: the
timer number 1 will
stops when nop is
executed.

<sendCmd> <![CDATA[]]> Content to be sent to
the twin 3PCC SIPp
instance. The Call-ID
must be included in the
CDATA. In 3pcc
extended mode, the
From must be included
to.

<sendCmd>
<![CDATA[
Call-ID:

[call_id]
[$1]

]]>
</sendCmd>

dest 3pcc extended mode
only: the twin sipp
instance which the
command will be sent
to

<sendCmd
dest="s1">: the
command will be sent
to the "s1" twin
instance

<recvCmd> action Specify an action when
receiving the
command. See Actions

Example of a "regular
expression" to retrieve
what has been send by

IMS Bench SIPp

Page 35
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



section for possible
actions.

a sendCmd command:
<recvCmd>
<action>

<ereg
regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>
</action>

</recvCmd>

src 3pcc extended mode
only: indicate the twin
sipp instance which the
command is expected
to be received from

<recvCmd src =
"s1">: the command
will be expected to be
received from the "s1"
twin instance

<label> id A label is used when
you want to branch to
specific parts in your
scenarios. The "id"
attribute is an integer
where the maximum
value is 19. See
conditional branching
section for more info.

Example: set label
number 13:
<label id="13"/>

<Response Time
Repartition>

value Specify the intervals, in
milliseconds, used to
distribute the values of
response times.

<ResponseTimeRepartition
value="10, 20,
30"/>: response time
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

<Call Length
Repartition>

value Specify the intervals, in
milliseconds, used to
distribute the values of
the call length
measures.

<CallLengthRepartition
value="10, 20,
30"/>: call length
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

IMS Bench SIPp

Page 36
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



<sync> action As most scenarios
have a preparation
step (user reservation)
that is not considered
part of the actual
scenario exercised and
as this actual scenario
must start at the time
given by the statistical
distribution of scenario
attempts, scenario files
(at least the initiating
side) must contain a
synchronization point
where SIPp will wait
until the time the actual
scenario attempt must
start.

<sync
crlf="true">
<action>
<exec

int_cmd="set_start_time"/>
</action>
</sync>
Note that the manager
configuration can
disable this
synchronization for
some parts of the runs,
for example in a step
performing the
pre-registration of
users.

<sendRmt> type The command sends a
(non-SIP) message to
the partner SIPp
instance. In case no
partner has been
assigned yet to the
scenario, a partner
SIPp instance is
selected at random
(uniform) before
sending the message.

<sendRmt
type="req_user">
<param
name="scenario"
value="ims_uas"/>
<param
name="from_uri"
value="[field0]@[field1]"/>
<param
name="call_id"
value="[call_id]"/>
</sendRmt>

<recvRmt> type The command waits
for a message of the
specified type to be
received from the
partner SIPp instance.

Additionally, it can also
be the first command of a
receiving side scenario
(e.g. the called party), in

<recvRmt
type="req_user">
<action>
<assign_user

pool="2"/>
<move_user

pool="3"/>
</recvRmt>

IMS Bench SIPp

Page 37
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



which case it must
specify the req_user
message type.
A special behavior is
implemented for this
message type: when
received, SIPp
instantiates a new
incoming call executing
the scenario specified by
the scenario parameter of
the incoming req_user
message, assigns it the
sending SIPp instance as
partner and then feeds the
newly created call with
the received message so
that scenario execution
immediately starts.

timeout Max time to wait for the
message from partner
(not valid for a
<recvRmt> as first
command in a
scenario).

<recvRmt
type="res_user"
timeout="8000">
<action>
<store_param

param="user_name"
assign_to="1"/>
</action>
</recvRmt>

Table 1: List of commands with their attributes
Partner Message Types (sendRmt and recvRmt)

req_user Requests user reservation.

res_user Result of user resevation.

res_call_info Typically sent at the end of a scenario, carries
call information like RTDs and timestamps
measured at the partner SIPp (the approach is
that all timing measurements are gathered at

IMS Bench SIPp

Page 38
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



one side of a scenario and dumped by that side
- hence they need to be sent from the partner in
case they were measured there, or in case the
measurement is between events at different
sides).

There are not so many commands: send, recv, sendRmt, recvRmt, pause, ResponseTimeRepartition and CallLengthRepartition. To make things even clearer, nothing
is better than an example...

5.1. Structure of client (UAC like) XML scenarios

A client scenario is a scenario that starts with a "send" command. So let's start:
<scenario name="Basic Sipstone UAC">
<send>
<![CDATA[

INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call_id]
Cseq: 1 INVITE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: [len]

v=0
o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
s=-
t=0 0
c=IN IP[media_ip_type] [media_ip]
m=audio [media_port] RTP/AVP 0
a=rtpmap:0 PCMU/8000

]]>
</send>

Inside the "send" command, you have to enclose your SIP message between the "<![CDATA" and the "]]>" tags. Everything between those tags is going to be sent
toward the remote system. You may have noticed that there are strange keywords in the SIP message, like [service], [remote_ip], .... Those keywords are used to

IMS Bench SIPp

Page 39
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



indicate to SIPp that it has to do something with it.

Here is the list:

Keyword Default Description

[service] service Service field, as passed in the
-s service_name

[remote_ip] - Remote IP address, as passed
on the command line.

[remote_port] 5060 Remote IP port, as passed on
the command line. You can add
a computed offset
[remote_port+3] to this value.

[transport] UDP Depending on the value of -t
parameter, this will take the
values "UDP" or "TCP".

[local_ip] Primary host IP address Will take the value of -i
parameter.

[local_ip_type] - Depending on the address type
of -i parameter (IPv4 or IPv6),
local_ip_type will have value
"4" for IPv4 and "6" for IPv6.

[local_port] Random Will take the value of -p
parameter. You can add a
computed offset [local_port+3]
to this value.

[len] - Computed length of the SIP
body. To be used in
"Content-Length" header. You
can add a computed offset
[len+3] to this value.

[call_number] - Index. The call_number starts
from "1" and is incremented by
1 for each call.

IMS Bench SIPp

Page 40
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



[cseq] - Generates automatically the
CSeq number. The initial value
is 1 by default. It can be
changed by using the
-base_cseq command line
option.

[call_id] - A call_id identifies a call and is
generated by SIPp for each
new call. In client mode, it is
mandatory to use the value
generated by SIPp in the
"Call-ID" header. Otherwise,
SIPp will not recognise the
answer to the message sent as
being part of an existing call.
Note: [call_id] can be
pre-pended with an arbitrary
string using '///'. Example:
Call-ID:
ABCDEFGHIJ///[call_id] - it will
still be recognized by SIPp as
part of the same call.

[media_ip] - Depending on the value of -mi
parameter, it is the local IP
address for RTP echo.

[media_ip_type] - Depending on the address type
of -mi parameter (IPv4 or
IPv6), media_ip_type will have
value "4" for IPv4 and "6" for
IPv6. Useful to build the SDP
independently of the media IP
type.

[media_port] - Depending on the value of -mp
parameter, it set the local RTP
echo port number. Default is
none. RTP/UDP packets
received on that port are

IMS Bench SIPp

Page 41
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



echoed to their sender. You
can add a computed offset
[media_port+3] to this value.

[auto_media_port] - Only for pcap. To make audio
and video ports begin from the
value of -mp parameter, and
change for each call using a
periodical system, modulo
10000 (which limits to 10000
concurrent RTP sessions for
pcap_play)

[last_*] - The '[last_*]' keyword is
replaced automatically by the
specified header if it was
present in the last message
received (except if it was a
retransmission). If the header
was not present or if no
message has been received,
the '[last_*]' keyword is
discarded, and all bytes until
the end of the line are also
discarded. If the specified
header was present several
times in the message, all
occurrences are concatenated
(CRLF separated) to be used in
place of the '[last_*]' keyword.

[field0-n] - Used to inject values from an
external CSV file or from static
user data if a user is assigned
to the call. See "Injecting
values from an external CSV
during calls" section.

[$n] - Used to inject the value of call
variable number n. See
"Actions" section

IMS Bench SIPp

Page 42
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



[authentication] - Used to put the authentication
header. This field can have
parameters, in the following
form: [authentication
username=myusername
password=mypassword]. If no
username is provided, the
value from -s command line
parameter (service) is used. If
no password is provided, the
value from -ap command line
parameter is used. See
"Authentication" section

[pid] - Provide the process ID (pid) of
the main SIPp thread.

[routes] - If the "rrs" attribute in a recv
command is set to "true", then
the "Record-Route:" header of
the message received is stored
and can be recalled using the
[routes] keyword

[next_url] - If the "rrs" attribute in a recv
command is set to "true", then
the [next_url] contains the
contents of the Contact header
(i.e within the '<' and '>' of
Contact)

[branch] - Provide a branch value which is
a concatenation of magic
cookie (z9hG4bK) + call
number + message index in
scenario.

[msg_index] - Provide the message number
in the scenario.

[cseq] - Provides the CSeq value of the

IMS Bench SIPp

Page 43
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



last request received. This
value can be incremented (e.g.
[cseq+1] adds 1 to the CSeq
value of the last request).

[%<param>] - Use to inject a global generic
parameters (see -key
command line option and
manager scenario parameters).
Example: <pause
poisson="true"
mean="%RingTime"/>

Table 1: Keyword list
Now that the INVITE message is sent, SIPp can wait for an answer by using the "recv" command.
<recv response="100"> optional="true"
</recv>

<recv response="180"> optional="true"
</recv>

<recv response="200">
</recv>

100 and 180 messages are optional, and 200 is mandatory. In a "recv" sequence, there must be one mandatory message.

Now, let's send the ACK:
<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

IMS Bench SIPp

Page 44
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



We can also insert a pause. The scenario will wait for 5 seconds at this point.
<pause milliseconds="5000"/>

And finish the call by sending a BYE and expecting the 200 OK:
<send retrans="500">
<![CDATA[

BYE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 2 BYE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

<recv response="200">
</recv>

And this is the end of the scenario:
</scenario>

Creating your own SIPp scenarios is not a big deal. If you want to see other examples, use the -sd parameter on the command line to display embedded scenarios.

5.2. Structure of server (UAS like) XML scenarios

A server scenario is a scenario that starts with a "recv" command. The syntax and the list of available commands is the same as for "client" scenarios.

But you are more likely to use [last_*] keywords in those server side scenarios. For example, a UAS example will look like:
<recv request="INVITE">
</recv>

<send>
<![CDATA[

SIP/2.0 180 Ringing
[last_Via:]
[last_From:]

IMS Bench SIPp

Page 45
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



[last_To:];tag=[call_number]
[last_Call-ID:]
[last_CSeq:]
Contact: <sip:[local_ip]:[local_port];transport=[transport]>
Content-Length: 0

]]>
</send>

The answering message, 180 Ringing in this case, is built with the content of headers received in the INVITE message.

5.3. Actions

In a "recv" or "recvCmd" command, you have the possibility to execute an action. Several actions are available:

• Regular expressions (ereg)
• Log something in aa log file (log)
• Execute an external (system), internal (int_cmd) or pcap_play_audio/pcap_play_video command (exec)
• User-related Actions (assign_user, move_user)
• RTD-related Actions (rtd_eval, rtd_store, rtd_op)

5.3.1. Regular expressions

Using regular expressions in SIPp allows to

• Extract content of a SIP message or a SIP header and store it for future usage (called re-injection)
• Check that a part of a SIP message or of a header is matching an expected expression

Regular expressions used in SIPp are defined per Posix Extended standard (POSIX 1003.2) (http://www.opengroup.org/onlinepubs/007908799/xbd/re.html) . If you
want to learn how to write regular expressions, I will recommend this regexp tutorial (http://analyser.oli.tudelft.nl/regex/index.html.en) .

Here is the syntax of the regexp action:

Keyword Default Description

regexp None Contains the regexp to use for
matching the received
message or header.
MANDATORY.

search_in msg can have 2 values: "msg" (try to

IMS Bench SIPp

Page 46
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://analyser.oli.tudelft.nl/regex/index.html.en


match against the entire
message) or "hdr" (try to match
against a specific SIP header).

header None Header to try to match against.
Only used when the search_in
tag is set to hdr. MANDATORY
IF search_in is equal to hdr.

case_indep false To look for a header ignoring
case . Only used when the
search_in tag is set to hdr.

occurence 1 To find the nth occurrence of a
header. Only used when the
search_in tag is set to hdr.

start_line false To look only at start of line.
Only used when the search_in
tag is set to hdr.

check_it false if set to true, the call is marked
as failed if the regexp doesn't
match.

assign_to None contains the variable id
(integer) or a list of variable id
which will be used to store the
result(s) of the matching
process between the regexp
and the message. Those
variables can be re-used at a
later time either by using '[$n]'
in the scenario to inject the
value of the variable in the
messages or by using the
content of the variables for
conditional branching.

With the introduction by IMS
Bench SIPp of the concept of
users, it is now also possible to

IMS Bench SIPp

Page 47
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



store results of regular expression
matching into user variables.
These variables can then be used
just like call variables but,
contrary to call variables, they
preserve their value between
subsequent calls associated with
the same user. Assigning a value
to a user variable requires that a
user has previously been assigned
to the call. To assign a result to a
user variable n, the variable id
must be specified as 'un'.

The first variable in the variable
list of assign_to contains the entire
regular expression matching. The
following variables contain the
sub-expressions matching.
Example:

<ereg
regexp="o=([[:alnum:]]*)
([[:alnum:]]*)
([[:alnum:]]*)"
search_in="msg"
check_it=i"true"
assign_to="3,u3,u2,8"/>
If the SIP message contains
the line
o=user1 53655765
2353687637 IN IP4
127.0.0.1
call variable 3 will contain
"o=user1 53655765
2353687637", user variable 3
will contain "user1", user
variable 2 will contain
"53655765" and call variable 8
will contain "2353687637".

Table 1: regexp action syntax

IMS Bench SIPp

Page 48
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Note that you can have several regular expressions in one action.

The following example is used to:

• First action:
• Extract the first IPv4 address of the received SIP message
• Check that we could actually extract this IP address (otherwise call will be marked as failed)
• Assign the extracted IP address to call variables 1 and 2.

• Second action:
• Extract the Contact: header of the received SIP message
• Assign the extracted Contract: header to variable 6.

<recv response="200" start_rtd="true">
<action>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="msg" check_it="true" assign_to="1,2" />
<ereg regexp=".*" search_in="hdr" header="Contact:" check_it="true" assign_to="6" />

</action>
</recv>

5.3.2. Log a message

The "log" action allows you to customize your traces. Messages are printed in the <scenario file name>_<pid>_logs.log file. Any keyword is expanded to reflect the
value actually used.

Warning:
Logs are generated only if -trace_logs option is set on the command line.

Example:
<recv request="INVITE" crlf="true" rrs="true">
<action>

<ereg regexp=".*" search_in="hdr" header="Some-New-Header:" assign_to="1" />
<log message="From is [last_From]. Custom header is [$1]"/>

</action>
</recv>

5.3.3. Execute a command

IMS Bench SIPp

Page 49
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



The "exec" action allows you to execute "internal", "external", "play_pcap_audio" or "play_pcap_video" commands.

5.3.3.1. Internal commands

Internal commands (specified using int_cmd attribute) are:

Keyword Description Example

stop_call
stop_gracefully

Similar to pressing 'q' <exec
int_cmd="stop_call"/>

stop_now Similar to pressing ctrl+C <exec
int_cmd="stop_now"/>

set_start_time Resets the time reference for
the current call. This is used so
as to ignore the user
reservation procedure portion
of a scenario, as it is not
actually part of the SIP
scenario being performed. This
action should therefore be
performed at the point in the
scenario file where the actual
SIP scenario really starts.

<exec
int_cmd="set_start_time"/>

set_target_ip Forces the target IP to the one
of the partner SIPp (To be used
in "loop-back" configuration,
SIPp against SIPp without any
SUT in between).

<exec
int_cmd="set_target_ip"/>

Example that stops the execution of the script on receiving a 603 response:
<recv response="603" optional="true">
<action>

<exec int_cmd="stop_now"/>
</action>

</recv>

5.3.3.2. External commands

IMS Bench SIPp

Page 50
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



External commands (specified using command attribute) are anything that can be executed on local host with a shell.

Example that execute a system echo for every INVITE received:
<recv request="INVITE">
<action>

<exec command="echo [last_From] is the from header received >> from_list.log"/>
</action>

</recv>

5.3.3.3. PCAP (media) commands

UNTESTED! PCAP play commands to play pre-recorded RTP streams have not been modified in the IMS Bench SIPp but have also not been regression tested at all
in this version. Please refer to the standard SIPp documentation for more about PCAP play functionality. And if you successfully use it with IMS Bench SIPp, let us
know so we can update this section!

5.3.4. User related Actions

Keyword Description Example

assign_user Picks a user at random from a
specified user pool and assigns
the user to the scenario
instance (the call).

Once a user is assigned to the call,
user variables can be used to store
and retrieve data and the [fieldn]
injection fields refer to the user
static data as loaded from the user
data file (-user_inf command
line parameter)

Attributes:
• pool - Pool id of the pool from

which to select a user at
random

<assign_user pool="0"
scheme="rand_uni"/>

move_user Moves the user currently
assigned to the call into a
specified user pool.

<move_user pool="4"/>

IMS Bench SIPp

Page 51
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Attributes:
• pool - Pool id of the pool into

which to move the user

5.3.5. RTD-related Actions

The actions listed in this section allow performing operations on RTDs (Response Time Duration - i.e. SIPp scenario timers). In order for IMS Bench SIPp to provide
a scalable test system possibly consisting of multiple SIPp instances distributed over multiple physical systems, and also because of the need to measure time between
an event happening in the client-side scenario and another event happening at its partner server-side scenario (for example the time for the INVITE to get from the
UAC, through the SUT, to the UAS), IMS Bench SIPp provides a mechanism, based on actions, to compute RTDs based on timestamps from the local and the partner
SIPp scenarios. In addition, actions also allow computing RTDs are the sum of or difference between two other (local or remote) RTDs. This can be useful to compute
the time metric of a complete call setup but excluding the ring time (as the latter is user dependent and does not relfect responsiveness of the SUT).

In the RTD actions listed below, whenever a remote rtd can be used as argument, the action must be included in a <recvRmt> command that receives a message from
the parnter SIPp with the necessary RTD value. Otherwise, this will cause a failure of the test run.

These actions support a timeout attribute which is then used as a maximum allowed value for the rtd value that the action computes. In case the maximum is
exceeded, the scenario is aborted (while executing the action). Therefore, the Time Metrics feature should usually be used instead of the timeout argument unless
checking for protocol timeouts.

Action Description Example

rtd_eval Computes an RTD from 2
timestamps. Usually, at least
one of them has been received
from the partner SIPp.

Attributes:
• rtd (M) - target local rtd that

will hold the resulting
duration

• start (M) - local or remote rtd
containing the first timestamp
(remote rtd is specified as "r1"
for remote rtd[1])

• stop (M) - local or remote rtd
containing the second
timestamp

• timeout (O) - maximum value

<recvRmt
type="res_call_info"
timeout="8000">
<action>
<rtd_eval rtd="2"

start="2" stop="r2"/>
</action>

</recvRmt>

This will look in the message
received from the partner for a
parameter giving the start time
(timestamp) of RTD 2 and use that
to compute the local RTD 2 as the
difference between the local and
remote RTD 2 start times (used as
timestamps).

IMS Bench SIPp

Page 52
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



for the result. Call aborted if
exceeded.

After the action is executed, the
target local rtd contains (stop -
start).

rtd_op Performs a simple computation
(add or sub) on 2 RTDs. Each
RTD argument can be local or
remote. The operation is
performed on the values of the
specified RTDs (not on
start_times/timestamps, only on
already measured durations).

Attributes:
• rtd (M) - target local rtd that

will hold the resulting
duration

• op (M) - operation to be
performed: "add", "sub"

• rtd1 (M) - first operand
• rtd2 (M) - second operand
• timeout (O) - maximum value

for the result. Call aborted if
exceeded.

<action>
<rtd_op op="sub"

rtd="1" rtd1="1"
rtd2="5"/>
</action>

Substracts RTD5 from RTD1
(both local) and stores the result
into RTD 1.

rtd_store Simply stores an RTD received
from the partner into a local
RTD for later computation or as
final scenario metric value.

Attributes:
• rtd (M) - target local rtd that

will hold the retreived remote
rtd

• rmt_rtd (M) - remote rtd to
extract from the message
received from the partner

• timeout (O) - maximum value

<recvRmt
type="res_call_info"
timeout="8000">
<action>
<rtd_store rtd="3"

rmt_rtd="5"/>
</action>

</recvRmt>

Stores the value of the remote
RTD5 as received in the message
from the partner SIPp into local
RTD3.

IMS Bench SIPp

Page 53
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



for rtd. Call aborted if
exceeded.

5.4. Injecting values from an external CSV during calls

In addition to the standard value injection mechanism provided by SIPp, IMS Bench SIPp supports a new, more user-centric mode of operation. This is triggered by
the use of the -user_inf command line parameter. For the standard SIPp mode of operation, please refer to the standard SIPp documentation.

When the -user_inf command line parameter is used to specify a user data file, corresponding user entities are created within SIPp and, in UDP mode, are each
assigned a different IP and port combination. Data from the specified file is also loaded into user specific data fields which can then be used within the scenarios.

Similar to what happens in the standard SIPp case, the [fieldn] keyword is replaced, in outgoing messages, by the n-th user data field of the user currently associated
with the call. This requires that a user has previously been associated with the call by means of a <assign_user> action.

The user data file has the following format:

• Each line defines one user and is made up of semi-colon (';') delimited columns.
• The first column represents the ID of the user pool that the user will initially be placed in.
• Subsequent columns hold the static user data fields that scenarios can refer to using the [fieldn] keyword.

Example:

0;subs000000;ims.test;usim000000;sp1.ims.test;pass000000;data0_1
0;subs000001;ims.test;usim000001;sp1.ims.test;pass000001;data1_1
0;subs000002;ims.test;usim000002;sp1.ims.test;pass000002;data2_1
0;subs000003;ims.test;usim000003;sp1.ims.test;pass000003;data3_1
0;subs000004;ims.test;usim000004;sp1.ims.test;pass000004;data4_1
...

In this example, all users are initially in pool 0 (for example, the pool of not registered users). The meaning of the remaining fields depends on what the scenario files
do with them but in case of the provided IMS Benchmark scenarios, the user data fields have the following meaning, and can be specified in the associated entries in
the Users provisioning menu of the ims_bench tool:

• username part of the public identity of the user: PublicIdentityFormat
• domain part of the public identity of the user: UserDomain

or IP address of the IMS Bench SIPp instance: when DontPreRegisterButUseSippIP = 1 (in order to execute scenarios without the need for a pre-registration
phase)

• authentication username: PrivateIdentityFormat

IMS Bench SIPp

Page 54
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• authentication realm: UserRealm
• authentication password (AKA Key value): UserPasswordFormat
• example extra data - not used

5.5. Conditional branching

5.5.1. Conditional branching in scenarios

It is possible to execute a scenario in a non-linear way. You can jump from one part of the scenario to another for example when a message is received or if a call
variable is set.

You define a label (in the xml) as <label id="n"/> Where n is a number between 1 and 19 (we can easily have more if needed). The label commands go
anywhere in the main scenario between other commands. To any action command (send, receive, pause, etc.) you add a next="n" parameter, where n matches the id of
a label. When it has done the command it continues the scenario from that label. This part is useful with optional receives like 403 messages, because it allows you
to go to a different bit of script to reply to it and then rejoin at the BYE (or wherever or not).

Alternatively, if you add a test="m" parameter to the next, it goes to the label only if variable [$m] is set. This allows you to look for some string in a received packet
and alter the flow either on that or a later part of the script.

Warning:
If you add special cases at the end, don't forget to put a label at the real end and jump to it at the end of the normal flow.

Example:

The following example corresponds to the embedded 'branchc' (client side) scenario. It has to run against the embedded 'branchs' (server side) scenario.

IMS Bench SIPp

Page 55
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



IMS Bench SIPp

Page 56
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



5.5.2. Randomness in conditional branching

To have SIPp behave somewhat more like a "normal" SIP client being used by a human, it is possible to use "statistical branching". Wherever you can have a

IMS Bench SIPp

Page 57
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



conditional branch on a variable being set (test="4"), you can also branch based on a statistical decision using the attribute "chance" (e.g. chance="0.90"). Chance can
have a value between 0 (never) and 1 (always). "test" and "chance" can be combined, i.e. only branching when the test succeeds and the chance is good.

With this, you can have a variable reaction in a given scenario (e.g.. answer the call or reject with busy), or run around in a loop (e.g. registrations) and break out of it
after some random number of iterations.

5.6. SIP Authentication

Two authentication algorithms are supported: Digest/MD5 ("algorithm="MD5"") and Digest/AKA ("algorithm="AKAv1-MD5"", as specified by 3GPP for IMS).

Note: IMS Bench SIPp has authentication support enabled by default at compile time (requiring OpenSSL libs as described in the installation section).

Doing authentication in scenarios is simple: When receiving a 401 (Unauthorized) or a 407 (Proxy Authentication Required), you must add auth="true" in the <recv>
command to take the challenge into account in order to compute a response in a next message.

In addition, the auth_assign_to argument can specify, in the same <recv> command as the one where auth="true" is specified, a user or call variable into which
to store the challenge for later usage (in a subsequent call and possibly for a different scenario in case storing in a user variable).
This is for example used, in the IMS Bench, to include an authenticatom response in the first REGISTER message of a re-registration, as an attempt to speed up the
re-registration process in case the SUT still accepts a response to an earlier challenge (Note: This is probably not correct and might not work against real IMS cores -
the re-registration scenario is in need of some rework).

Computing the authorization header is done through the usage of the [authentication] keyword. Depending on the algorithm ("MD5" or "AKAv1-MD5"), different
parameters must be passed next to the authentication keyword:

• Digest/MD5 (example: [authentication username=joe password=schmo])
• username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
• password: password: if no password is specified, the password is taken from the '-ap' (authentication password) command line parameter

• Digest/AKA: (example: [authentication username=HappyFeet aka_OP=0xCDC202D5123E20F62B6D676AC72CB318
aka_K=0x465B5CE8B199B49FAA5F0A2EE238A6BC aka_AMF=0xB9B9])
• username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
• aka_K (or password): Permanent secret key. If no aka_K is provided, the "password" attributed is used as aka_K.
• aka_OP: OPerator variant key
• aka_AMF: Authentication Management Field (indicates the algorithm and key in use)

In case you want to use authentication with a different username/password or aka_K for each call, (NEW!) you can use keywords within the [authentication] keyword
and take the values from user static data fields or from a CSV file.

IMS Bench SIPp

Page 58
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Example:
<recv response="401" auth="true" auth_assign_to="u2" rtd="1">
</recv>

<send retrans="500" start_rtd="2">
<![CDATA[
REGISTER sip:[field1] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch]
From: "[field0]" <sip:[field0]@[field1]>;tag=[call_number]
To: "[field0]" <sip:[field0]@[field1]>
Call-ID: [call_id]
CSeq: 2 REGISTER
Contact: <sip:[field0]@[local_ip]:[local_port]>;expires=[%RegistrationExpire]
Expires: [%RegistrationExpire]
Content-Length: 0
[authentication username=[field2]@[field3] password=[field4]]
Supported: path

]]>
</send>

If you later (for example in another scenario) want to generate an authentication response based on the challenge that was stored in user variable u2 by the previous
example, the following authentication line, using the challenge_from and challenge_type attributes would do it:

[authentication username=[field2]@[field3] password=[field4] challenge_from="u2" challenge_type=401]

6. Various Topics

6.1. SIPp Transport Modes

From the transport modes supported by the standard SIPp, IMS Bench SIPp currently supports:

• UDP transport, on top of which it adds a few options (see below) making it more closely resemble a set of separate client devices
• TCP transport

6.1.1. UDP one socket per user

In UDP "one socket per user" mode, each user that a SIPp instance represents corresponds to a separate UDP port that SIPp uses for the traffic belonging to that user.

All users however share a single IP address.

IMS Bench SIPp

Page 59
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



6.1.2. UDP multiple IP addresses

In UDP "multiple IP addresses" mode, SIPp distributes the users it represents among a set of configured IP addresses. In case there are more users than IP addresses,
different UDP ports are used for users that share the same IP address, thereby giving a unique IP adddress / UDP port combination to each user.

6.1.3. TCP one pair of sockets per SIPp instance

In TCP mode, each SIPp instance has a single IP address and creates one pair of TCP sockets to the SUT. The first socket carries SIP traffic for server side scenarios,
and the second one is used for client side scenarios.

All users represented by the SIPp instance share this single pair of TCP sockets.

6.2. Running SIPp in background

SIPp can be launched in background mode (-bg command line option).

By doing so, SIPp will be detached from the current terminal and run in the background. The PID of the SIPp process is provided on standard output at startup (can be
useful when you run multiple instances!). If you are not controlling SIPp through the IMS Bench SIPp manager and if you didn't specify a number of calls to execute
with the -m option, SIPp will run forever.

There is a mechanism implemented to stop SIPp smoothly. The command kill -SIGUSR1 [SIPp_PID] will instruct SIPp to stop placing any new calls and
finish all ongoing calls before exiting.

6.3. Handling Media with SIPp

Media plane features have not been tested with IMS Bench SIPp and are therefore likely to be broken. The corresponding code has however not been removed.

6.4. SIPp Exit codes

To ease automation of testing, upon exit (on fatal error or when the number of asked calls (-m command line option) is reached, sipp exits with one of the following
exit codes:

• 0: All calls were successful
• 1: At least one call failed
• 97: exit on internal command. Calls may have been processed
• 99: Normal exit without calls processed

IMS Bench SIPp

Page 60
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• -1: Fatal error

Depending on the system that SIPp is running on, you can echo this exit code by using "echo ?" command.

6.5. Statistics

6.5.1. Response times

Response times (or more generally time between two scenario events) can be gathered and reported. SIPp has 5 timers (the number is set at compile time) used to
compute time between two SIPp commands (send, recv or nop). You can start a timer by using the start_rtd attribute and stop it using the rtd attribute.

You can view the value of those timers in the SIPp interface by pressing 3, 6, 7, 8 or 9. You can also save the values in a CSV file using the -trace_stat option (see
below).

IMS Bench SIPp extends this mechanism in several ways:

As most IMS Bench scenarios require measuring several delays, the start_rtd and rtd attributes have been extended to support a list of timers to start or stop at once.
This allows, for example, measuring delays between the same starting point and different end points, or vice-versa. See start_rtd attribute for an example.

IMS Bench SIPp adds the possibility to check at run-time that the value of a specific timer remains within an allowed range and, in case it exceeds its maximum
allowed value, to flag the call as inadequately handled even though it was successful from a protocol point of view. This is then reflected in the statistics, and in the
scenario result CSV file if the -trace_scen command line option is used. In a complete IMS Bench SIPp setup, this also impacts the percentage of inadequately
handled scenario attempts as determined by the manager when deciding whether to do the next step of the load profile or not.
In IMS Bench SIPp, the timers that must be dumped into the scenario CSV result file, and for whch such a maximum value can be defined are called a "metrics". See
Time Metrics to learn more about this feature and the associated syntax.

IMS Bench SIPp being a scalable test system that attempts to mimic real users connecting to the SUT, it can orchestrate scenario execution between two SIPp
instances possibly running on different physical systems. New actions were added to allow computation on timer values (RTDs), including computing an RTD as a
difference between two timestamps, one local, the other from the remote (partner) SIPp instance.

6.5.2. Available counters

The -trace_stat option dumps all statistics in the scenario_name_pid.csv file. The dump starts with one header line with all counters. All following lines are
'snapshots' of statistics counter given the statistics report frequency (-fd option). When SIPp exits, the last values of the statistics are also dumped in this file.

This file can be easily imported in any spreadsheet application, like Excel.

IMS Bench SIPp

Page 61
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



In counter names, (P) means 'Periodic' - since last statistic row and (C) means 'Cumulated' - since sipp was started.

Available statistics are:

• StartTime: Date and time when the test has started.
• LastResetTime: Date and time when periodic counters where last reseted.
• CurrentTime: Date and time of the statistic row.
• ElapsedTime: Elapsed time.
• CallRate: Call rate (calls per seconds).
• IncomingCall: Number of incoming calls.
• OutgoingCall: Number of outgoing calls.
• TotalCallCreated: Number of calls created.
• CurrentCall: Number of calls currently ongoing.
• SuccessfulCall: Number of successful calls.
• FailedCall: Number of failed calls (all reasons).
• FailedCannotSendMessage: Number of failed calls because Sipp cannot send the message (transport issue).
• FailedMaxUDPRetrans: Number of failed calls because the maximum number of UDP retransmission attempts has been reached.
• FailedUnexpectedMessage: Number of failed calls because the SIP message received is not expected in the scenario.
• FailedCallRejected: Number of failed calls because of Sipp internal error. (a scenario sync command is not recognized or a scenario action failed or a scenario

variable assignment failed).
• FailedCmdNotSent: Number of failed calls because of inter-Sipp communication error (a scenario sync command failed to be sent).
• FailedRegexpDoesntMatch: Number of failed calls because of regexp that doesn't match (there might be several regexp that don't match during the call but the

counter is increased only by one).
• FailedRegexpHdrNotFound: Number of failed calls because of regexp with hdr option but no matching header found.
• OutOfCallMsgs: Number of SIP messages received that cannot be associated with an existing call.
• AutoAnswered: Number of unexpected specific messages received for new Call-ID. The message has been automatically answered by a 200 OK Currently,

implemented for 'PING' message only.
• Retransmissions: Number of UDP retransmission.
• Retransmissions2: Stat collected at the server side are added to the client side.
• FailedTimeoutInRtdOp: Number of calls that exceed the defined metrics or for which the timeout specified in an rtd evaluation action was exceeded.

In addition, two other statistics are gathered:

• ResponseTime (see previous section)
• CallLength: this is the time of the duration of an entire call.

IMS Bench SIPp

Page 62
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Both ResponseTime and CallLength statistics can be tuned using ResponseTimeRepartition and CallLengthRepartition commands in the scenario.

6.6. Error handling

SIPp has advanced features to handle errors and unexpected events. They are detailed in the following sections.

6.6.1. Unexpected messages

• When a SIP message that can be correlated to an existing call (with the Call-ID: header) but is not expected in the scenario is received, SIPp will send a
CANCEL message if no 200 OK message has been received or a BYE message if a 200 OK message has been received. The call will be marked as failed. If the
unexpected message is a 4XX or 5XX, SIPp will send an ACK to this message, close the call and mark the call as failed.

• When a SIP message that can't be correlated to an existing call (with the Call-ID: header) is received, SIPp will send a BYE message. The call will not be
counted at all.

• When a SIP "PING" message is received, SIPp will send an ACK message in response. This message is not counted as being an unexpected message. But it is
counted in the "AutoAnswered" statistic counter.

• An unexpected message that is not a SIP message will be simply dropped.

6.6.2. Retransmissions (UDP only)

A retransmission mechanism exists in UDP transport mode. To activate the retransmission mechanism, the "send" command must include the "retrans" attribute.

When it is activated and a SIP message is sent and no ACK or response is received in answer to this message, the message is re-sent.

Note:
The retransmission mechanism follows RFC 3261, section 17.1.1.2. Retransmissions are differentiated between INVITE and non-INVITE methods.

<send retrans="500">: will initiate the T1 timer to 500 milliseconds.

Even if retrans is specified in your scenarios, you can override this by using the -nr command line option to globally disable the retransmission mechanism.

6.6.3. Log files (error + log + screen)

There are several ways to trace what is going on during your SIPp runs.

• You can log sent and received SIP messages in <name_of_the_scenario>_<pid>_messages.log by using the command line parameter -trace_msg. The
messages are time-stamped so that you can track them back.

IMS Bench SIPp

Page 63
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• You can trace all unexpected messages or events in <name_of_the_scenario>_<pid>_errors.log by using the command line parameter -trace_err.
• You can save in a file the statistics screens, as displayed in the interface. This is especially useful when running SIPp in background mode.

This can be done in two ways:
• When SIPp exits to get a final status report (-trace_screen option)
• On demand by using USR2 signal (example: kill -SIGUSR2 738)

• You can log all call ids for calls that timeout (the maximum number of retransmissions for UDP transport is reached) by using the command line parameter
-trace_timeout

6.7. Online help (-h)

The online help, available through the -h option is duplicated here for your convenience
Usage:

sipp remote_host[:remote_port] [options]

Available options:

-aa Enable automatic 200 OK answer for INFO,
UPDATE and NOTIFY messages.

-ap password Set the password for authentication challenges.
Default is 'password'

-auth_uri Force the value of the URI for authentication.
By default, the URI is composed of
remote_ip:remote_port.

-base_cseq n Start value of [cseq] for each call.

-bg Launch SIPp in background mode.

-bind_local Bind socket to local IP address, i.e. the local IP
address is used as the source IP address.
If SIPp runs in server mode it will only listen on
the local IP address instead of all IP addresses.

-buff_size buff_size Set the send and receive buffer size.

-cid_str string Call ID string (default %u-%p@%s).
%u=call_number, %s=ip_address,

IMS Bench SIPp

Page 64
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



%p=process_number,%%=% (in any order).

-d duration Controls the length (in milliseconds) of calls.
More precisely, this controls the duration of
'pause' instructions in the scenario, if they do not
have a 'milliseconds' section.
Default value is 0.

-f frequency Set the statistics report frequency on screen (in
seconds).
Default is 1.

-fd frequency Set the statistics dump log report frequency (in
seconds).
Default is 60.

-groupid id SIPp group ID to define SIPp pools (see -rmctrl)

-i local_ip Set the local IP address for 'Contact:', 'Via:', and
'From:' headers.
Default is primary host IP address.

-id SIPp Test system ID to communicate to the
manager (see -rmctrl)

-inf file_name Inject values from an external CSV file during
calls into the scenarios. First line of this file say
whether the data is to be read in sequence
(SEQUENTIAL) or random (RANDOM) order.
Each line corresponds to one call and has one
or more ';' delimited data fields. Those fields can
be referred as [field0], [field1], ... in the xml
scenario file.

-ip_field nr Set which field from the injection file contains the
IP address from which the client will send its
messages.
If this option is omitted and the '-t ui' option is
present, then field 0 is assumed.
Use this option together with '-t ui'

-key keyword value Set the generic parameter named "keyword" to

IMS Bench SIPp

Page 65
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



"value".

-l calls_limit Set the maximum number of simultaneous calls.
Once this limit is reached, traffic is decreased
until the number of open calls goes down.
Default: (3 * call_duration (s) * rate).

-lost Set the number of packets to lose by default
(scenario specifications override this value).

-m calls Stop the test and exit when 'calls' calls are
processed.

-master 3pcc extended mode: indicates the name of the
twin sipp instance (if master)

-max_invite_retrans Maximum number of UDP retransmissions for
invite transactions before call ends on timeout.

-max_non_invite_retrans Maximum number of UDP retransmissions for
non-invite transactions before call ends on
timeout.

-max_reconnect Set the the maximum number of reconnection.

-max_recv_loops Set the maximum number of messages received
read per cycle. Increase this value for high traffic
level.
The default value is 1000.

-max_retrans Maximum number of UDP retransmissions
before call ends on timeout.
Default is 5 for INVITE transactions and 7 for
others.

-max_socket max Set the max number of sockets to open
simultaneously.
This option is significant if you use one socket
per call. Once this limit is reached, traffic is
distributed over the sockets already opened.
Default value is 50000.

IMS Bench SIPp

Page 66
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



-mb buf_size Set the RTP echo buffer size (default: 2048).

-mi local_rtp_ip Set the local media IP address.

-mp media_port Set the local RTP echo port number.
Default is 6000.

-nd No Default. Disable all default behavior of SIPp
which are the following:
- On UDP retransmission timeout, abort the call
by
sending a BYE or a CANCEL
- On receive timeout with no ontimeout attribute,
abort the call by sending a BYE or a CANCEL
- On unexpected BYE send a 200 OK and close
the call
- On unexpected CANCEL send a 200 OK and
close the call
- On unexpected PING send a 200 OK and
continue the call
- On any other unexpected message, abort the
call by
sending a BYE or a CANCEL

-nr Disable retransmission in UDP mode.

-p local_port Set the local port number.
Default is a random free port chosen by the
system.

-pause_msg_ign Ignore the messages received during a pause
defined in the scenario

-r rate (cps) Set the call rate (in calls per seconds).
This value can be changed during test by
pressing
• '+','_','*' or '/'. Default is 10.
• '+' key to increase call rate by 1,
• '-' key to decrease call rate by 1,
• '*' key to increase call rate by 10,
• '/' key to decrease call rate by 10.

IMS Bench SIPp

Page 67
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



If the -rp option is used, the call rate is
calculated with the period in ms given by the
user.

-rate_increase Specify the rate increase every -fd seconds
This allows you to increase the load for each
independent logging period
Example: -rate_increase 10 -fd 10
==> increase calls by 10 every 10 seconds.

-rate_max If -rate_increase is set, then quit after the rate
reaches this value.
Example: -rate_increase 10 -max_rate 100
==> increase calls by 10 until 100 cps is hit.

-reconnect_close true/false Should calls be closed on reconnect?

-reconnect_sleep int How long to sleep between the close and
reconnect?

-recv_timeout nb Global receive timeout in milliseconds.
If the expected message is not received, the call
times out and is aborted

-rmctrl ip[:port] IP of the Master Remote Control

-rp period (ms) Specify the rate period in milliseconds for the
call rate.
Default is 1 second.
This allows you to have n calls every m
milliseconds (by using -r n -rp m).
Example:
-r 7 -rp 2000 ==> 7 calls every 2 seconds.
-r 10 -rp 5s => 10 calls every 5 seconds.

-rsa host[:port] Set the remote sending address to host:port. for
sending the messages.

-rtp_echo Enable RTP echo. RTP/UDP packets received
on port defined by -mp are echoed to their
sender.
RTP/UDP packets coming on this port + 2 are

IMS Bench SIPp

Page 68
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



also echoed to their sender (used for sound and
video echo).

-rtt_freq freq freq is mandatory. Dump response times every
freq calls in the log file defined by -trace_rtt.
Default value is 200.

-s service_name Set the username part of the resquest URI.
Default is 'service'.

-scen_freq freq is mandatory. Dump scenario stats every
freq calls in the log file (see -trace_scen).
Default value is 200.

-sd name Dumps a default scenario (embeded in the sipp
executable)

-sf filename Loads an alternate xml scenario file.
To learn more about XML scenario syntax, use
the -sd option to dump embedded scenarios.
They contain all the necessary help.

-slave 3pcc extended mode: indicates the name of the
twin sipp instance (if slave)

-slave_cfg 3pcc extended mode: indicates the file where
the master and slave addresses are stored.
This option must be set in the command line
before the -sf option

-sn name Use a default scenario (embedded in the sipp
executable). If this option is omitted, the
Standard SipStone UAC scenario is loaded.
Available values in this version:
• 'uac' : Standard SipStone UAC (default).
• 'uac_pcap' : Standard SipStone UAC with pcap

play (RTP)
• 'uas' : Simple UAS responder.
• 'regexp' : Standard SipStone UAC - with regexp

and variables.
• 'branchc' : Branching and conditional branching

in scenarios - client.

IMS Bench SIPp

Page 69
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



• 'branchs' : Branching and conditional branching
in scenarios - server.

Default 3pcc scanerios (see -3pcc option):
• '3pcc-C-A' : Controller A side (must be started

after all other 3pcc scenarios)
• '3pcc-C-B' : Controller B side.
• '3pcc-A' : A side.
• '3pcc-B' : B side.

-stat_delimiter string Set the delimiter for the statistics file

-stf file_name Set the file name to use to dump statistics

-t [u1|un|ui|t1|tn|l1|ln] Set the transport mode:
• u1: UDP with one socket (default),
• un: UDP with one socket per call,
• ui: UDP with one socket per IP address

The IP addresses must be defined in the injection
file.

• t1: TCP with one socket
• tn: TCP with one socket per call
• l1: TLS with one socket
• ln: TLS with one socket per call
• c1: u1 + compression (only if compression

plugin loaded),
• cn: un + compression (only if compression

plugin loaded).

-tdmmap map Generate and handle a table of TDM circuits.
A circuit must be available for the call to be
placed.
Format: -tdmmap {0-3}{99}{5-8}{1-31}

-timeout nb Global timeout in seconds.
If this option is set, SIPp quits after nb seconds

-timer_resol Set the timer resolution in milliseconds.
This option has an impact on timers precision.
Small values allow more precise scheduling but
impacts CPU usage.

IMS Bench SIPp

Page 70
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



If the compression is on, the value is set to
50ms.
The default value is 10ms.

-tls_cert name Set the name for TLS Certificate file.
Default is 'cacert.pem'

-tls_crl name Set the name for Certificate Revocation List file.
If not specified, X509 CRL is not activated.

-tls_key name Set the name for TLS Private Key file.
Default is 'cakey.pem'

-trace_cpumem Allow tracing the CPU/MEM per second in
sipp_<pid>_cpumem.csv file.

-trace_err Trace all unexpected messages in <scenario file
name>_<pid>_errors.log.

-trace_logs Allow tracing of <log> actions in <scenario file
name>_>pid<_logs.log.

-trace_msg Displays sent and received SIP messages in
<scenario file name>_<pid>_messages.log

-trace_retrans Allow tracing number of retransmission per
second in <scenario_name>_<pid>_retrans.csv
file.

-trace_rtt Allow tracing of all response times in <scenario
file name>_<pid>_rtt.csv.

-trace_scen Allow tracing of scenario execution, result and
response times in sipp_<pid>_scen.csv.
(multi-scenario usage)

-trace_screen Dump statistic screens in the
<scenario_name>_<pid>_screens.log file when
quitting SIPp. Useful to get a final status report
in background mode (-bg option).

-trace_stat Dumps all statistics in
<scenario_name>_<pid>.csv file.

IMS Bench SIPp

Page 71
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



Use the '-h stat' option for a detailed description
of the statistics file content.

-trace_timeout Displays call ids for calls with timeouts in
<scenario file name>_<pid>_timeout.log

-up_nb Set the number of updates of the internal clock
during the reading of received messages.
Default value is 1.

-user_inf file_name Similar to -inf but for pre-loading user data.

-user_ip file_name Ip list to be used by users (Requiered
MULTI_IP_SUPPORT build option).

-users Instead of starting calls at a fixed rate, begin
'users' calls at startup, and keep the number of
calls constant.

-v Display version and copyright information.

-3pcc ip:port Launch the tool in 3pcc mode ("Third Party call
control"). The passed ip address is depending
on the 3PCC role.
- When the first twin command is 'sendCmd'
then this is the address of the remote twin
socket. SIPp will try to connect to this
address:port to send the twin command (This
instance must be started after all other 3PCC
scenarii).
Example: 3PCC-C-A scenario.
- When the first twin command is 'recvCmd' then
this is the address of the local twin socket. SIPp
will open this address:port to listen for twin
command.
Example: 3PCC-C-B scenario.

Signal handling:

SIPp can be controlled using posix signals. The following signals
are handled:

IMS Bench SIPp

Page 72
Copyright © 2004,2005,2006,2007 The authors All rights reserved.



USR1: Similar to press 'q' keyboard key. It triggers a soft exit
of SIPp. No more new calls are placed and all ongoing calls
are finished before SIPp exits.
Example: kill -SIGUSR1 732

USR2: Triggers a dump of all statistics screens in
<scenario_name>_<pid>_screens.log file. Especially useful
in background mode to know what the current status is.
Example: kill -SIGUSR2 732

Exit code:

Upon exit (on fatal error or when the number of asked calls (-m
option) is reached, sipp exits with one of the following exit
code:
0: All calls were successful
1: At least one call failed
97: exit on internal command. Calls may have been processed
99: Normal exit without calls processed
-1: Fatal error

Example:

Run sipp with embedded server (uas) scenario:
./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario
./sipp -sn uac 127.0.0.1

7. Getting support

You can likely get email-based support from the sipp users community. However, always clearly mention that your message is about IMS Bench SIPp and not
the "vanilla" SIPp because IMS Bench SIPp has just been released and most SIPp users are therefore using the vanilla SIPp and will not know about the specifics of
IMS Bench SIPp. Also a bug in IMS Bench SIPp might not be present in the vanilla SIPp and vice-versa.

The mailing list address is sipp-users@lists.sourceforge.net (mailto:sipp-users@lists.sourceforge.net) . To protect you from SPAM, this list is restricted (only people
that actually subscribed can post). Also, you can browse the SIPp mailing list archive: http://lists.sourceforge.net/lists/listinfo/sipp-users

8. Contributing

Of course, we welcome contributions! If you implemented new scenarios from the IMS/NGN Performance Benchmark specification or if you added a new feature to

IMS Bench SIPp

Page 73
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

mailto:sipp-users@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/sipp-users


IMS Bench SIPp, please send the "diff" output (diff -bruN old_sipp_directory new_sipp_directory) on the SIPp mailing list
(http://lists.sourceforge.net/lists/listinfo/sipp-users) , so that we can review and possibly integrate it in IMS Bench SIPp (and/or SIPp).

IMS Bench SIPp

Page 74
Copyright © 2004,2005,2006,2007 The authors All rights reserved.

http://lists.sourceforge.net/lists/listinfo/sipp-users

	1 Foreword
	2 Installation
	2.1 Obtaining the source code
	2.2 Pre-requisites
	2.3 Building IMS Bench SIPp components

	3 Using IMS Bench SIPp
	3.1 Configuration
	3.1.1 Manager Configuration

	3.2 Benchmark Execution
	3.2.1 Running
	3.2.2 Gathering Results
	3.2.3 Screens and Keys
	3.2.3.1 Manager
	3.2.3.2 CpuMem
	3.2.3.3 SIPp


	3.3 Generating Reports
	3.3.1 Configuring the Report Content
	3.3.1.1 General parameters
	3.3.1.2 Graphs

	3.3.2 Executing doReport.pl


	4 Concepts and Features
	4.1 Multi-scenario mode
	4.2 User oriented mode
	4.3 Time Metrics
	4.4 Traffic control

	5 Writing XML Scenarios
	5.1 Structure of client (UAC like) XML scenarios
	5.2 Structure of server (UAS like) XML scenarios
	5.3 Actions
	5.3.1 Regular expressions
	5.3.2 Log a message
	5.3.3 Execute a command
	5.3.3.1 Internal commands
	5.3.3.2 External commands
	5.3.3.3 PCAP (media) commands

	5.3.4 User related Actions
	5.3.5 RTD-related Actions

	5.4 Injecting values from an external CSV during calls
	5.5 Conditional branching
	5.5.1 Conditional branching in scenarios
	5.5.2 Randomness in conditional branching

	5.6 SIP Authentication

	6 Various Topics
	6.1 SIPp Transport Modes
	6.1.1 UDP one socket per user
	6.1.2 UDP multiple IP addresses
	6.1.3 TCP one pair of sockets per SIPp instance

	6.2 Running SIPp in background
	6.3 Handling Media with SIPp
	6.4 SIPp Exit codes
	6.5 Statistics
	6.5.1 Response times
	6.5.2 Available counters

	6.6 Error handling
	6.6.1 Unexpected messages
	6.6.2 Retransmissions (UDP only)
	6.6.3 Log files (error + log + screen)

	6.7 Online help (-h)

	7 Getting support
	8 Contributing

